首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6391篇
  免费   26篇
  国内免费   16篇
航空   3062篇
航天技术   2242篇
综合类   20篇
航天   1109篇
  2021年   50篇
  2019年   41篇
  2018年   101篇
  2017年   79篇
  2016年   76篇
  2015年   38篇
  2014年   118篇
  2013年   157篇
  2012年   156篇
  2011年   236篇
  2010年   167篇
  2009年   245篇
  2008年   320篇
  2007年   171篇
  2006年   138篇
  2005年   184篇
  2004年   177篇
  2003年   202篇
  2002年   131篇
  2001年   215篇
  2000年   114篇
  1999年   147篇
  1998年   182篇
  1997年   125篇
  1996年   145篇
  1995年   203篇
  1994年   201篇
  1993年   114篇
  1992年   145篇
  1991年   61篇
  1990年   68篇
  1989年   140篇
  1988年   65篇
  1987年   57篇
  1986年   66篇
  1985年   200篇
  1984年   182篇
  1983年   161篇
  1982年   140篇
  1981年   211篇
  1980年   56篇
  1979年   55篇
  1978年   58篇
  1977年   56篇
  1976年   47篇
  1975年   63篇
  1974年   50篇
  1973年   45篇
  1972年   68篇
  1971年   39篇
排序方式: 共有6433条查询结果,搜索用时 671 毫秒
631.
Numerical modeling tools can be used for a number of reasons yielding many benefits in their application to planetary upper atmosphere and ionosphere environments. These tools are commonly used to predict upper atmosphere and ionosphere characteristics and to interpret measurements once they are obtained. Additional applications of these tools include conducting diagnostic balance studies, converting raw measurements into useful physical parameters, and comparing features and processes of different planetary atmospheres. This chapter focuses upon various classes of upper atmosphere and ionosphere numerical modeling tools, the equations solved and key assumptions made, specified inputs and tunable parameters, their common applications, and finally their notable strengths and weaknesses. Examples of these model classes and their specific applications to individual planetary environments will be described.  相似文献   
632.
Algorithms for determining fixed-pitch propeller parameters and some flight characteristics of a superlight aircraft at the early stage of designing are described.  相似文献   
633.
This paper presents results of a preliminary study of feasibility for the application of electroactive polymer (EAP) based actuators to a robotic locomotion system, intended by the European Space Agency (ESA) to operate on the surface of Mars. The system is conceived as an elastic spherical rover, exploiting wind propulsion for surface motion, while adopting an active mechanism for vertical jumping over obstacles. The use of polymeric electromechanical devices is envisaged in order to provide actuation to such a jumping mechanism. Among the available EAP technologies, new contractile linear actuators based on dielectric elastomers arc proposed in this study as suitable devices and two potential solutions concerning their use are designed, modeled, and evaluated via numerical simulations. The best solution reveals interesting simulated performances, enabling jumping of obstacle heights corresponding to more than 7% of the diameter of the rover  相似文献   
634.
635.
Senator Lugar argues that a better European appreciation of the SDI is essential to try to define the roles of the US allies in the programme. A number of guidelines for allied participation should be applied, covering mode of participation, areas for participation, responsibilities under treaty provisions, technology transfer and security safeguards. Bilateral agreements are viewed as the mode for proceeding, but it is incumbent on the US government to outline the next steps it evisages to come to grips with the political considerations that will influence allied calculations on whether and under what circumstances to participate in SDI research.  相似文献   
636.
The problem of a spacecraft orbiting the Neptune–Triton system is presented. The new ingredients in this restricted three body problem are the Neptune oblateness and the high inclined and retrograde motion of Triton. First we present some interesting simulations showing the role played by the oblateness on a Neptune’s satellite, disturbed by Triton. We also give an extensive numerical exploration in the case when the spacecraft orbits Triton, considering Sun, Neptune and its planetary oblateness as disturbers. In the plane a × I (a = semi-major axis, I = inclination), we give a plot of the stable regions where the massless body can survive for thousand of years. Retrograde and direct orbits were considered and as usual, the region of stability is much more significant for the case of direct orbit of the spacecraft (Triton’s orbit is retrograde). Next we explore the dynamics in a vicinity of the Lagrangian points. The Birkhoff normalization is constructed around L2, followed by its reduction to the center manifold. In this reduced dynamics, a convenient Poincaré section shows the interplay of the Lyapunov and halo periodic orbits, Lissajous and quasi-halo tori as well as the stable and unstable manifolds of the planar Lyapunov orbit. To show the effect of the oblateness, the planar Lyapunov family emanating from the Lagrangian points and three-dimensional halo orbits are obtained by the numerical continuation method.  相似文献   
637.
Energetic ion composition measurements have now been performed from earth orbiting satellites for more than a decade. As early as 1972 we knew that energetic (keV) ions of terrestrial origin represented a non-negligible component of the storm time ring current. We have now assembled a significant body of knowledge concerning energetic ion composition throughout much of the earth's magnetosphere. We know that terrestrial ions are a common component of the hot equatorial magnetospheric plasma in the ring current and the plasma sheet out to ? 23 RE. During periods of enhanced geomagnetic activity this component may become dominant. There is also clear evidence that the terrestrial component (specifically O+) is strongly dependent on solar cycle. Terrestrial ion source, transport, and acceleration regions have been identified in the polar auroral region, over the polar caps, in the magnetospheric boundary layers, and within the magnetotail lobes and plasma sheet boundary layer. Combining our present knowledge of these various magnetospheric ion populations, it is concluded that the primary terrestrial ion circulation pattern associated with enhanced geomagnetic activity involves direct injection from the auroral ion acceleration region into the plasma sheet boundary layer and central plasma sheet. The observed terrestrial component of the magnetospheric boundary layer and magnetotail lobes are inadequate to provide the required influx. They may, however, contribute significantly to the maintenence of the plasma sheet terrestrial ion population, particularly during periods of reduced geomagnetic activity. It is further concluded, on the basis of the relative energy distributions of H+ and O+ in the plasma sheet, that O+ probably contributes significantly to the ring current population at energies inaccessible to present ion composition instrumentation (? 30 keV).  相似文献   
638.
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field.  相似文献   
639.
Electrical discharges in planetary atmospheres, and lightning in particular, can cause otherwise unexpected—but highly important—chemical species to be present. The synthesis of oxidants on Mars, nitrates on Earth and Early Mars, and of organic matter elsewhere can be driven by lightning and related electrical phenomena.  相似文献   
640.
As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号