全文获取类型
收费全文 | 8961篇 |
免费 | 35篇 |
国内免费 | 21篇 |
专业分类
航空 | 4085篇 |
航天技术 | 3149篇 |
综合类 | 25篇 |
航天 | 1758篇 |
出版年
2021年 | 86篇 |
2019年 | 54篇 |
2018年 | 186篇 |
2017年 | 123篇 |
2016年 | 126篇 |
2015年 | 61篇 |
2014年 | 208篇 |
2013年 | 275篇 |
2012年 | 258篇 |
2011年 | 392篇 |
2010年 | 288篇 |
2009年 | 395篇 |
2008年 | 449篇 |
2007年 | 274篇 |
2006年 | 194篇 |
2005年 | 251篇 |
2004年 | 237篇 |
2003年 | 279篇 |
2002年 | 190篇 |
2001年 | 290篇 |
2000年 | 160篇 |
1999年 | 212篇 |
1998年 | 241篇 |
1997年 | 159篇 |
1996年 | 212篇 |
1995年 | 258篇 |
1994年 | 263篇 |
1993年 | 156篇 |
1992年 | 182篇 |
1991年 | 73篇 |
1990年 | 76篇 |
1989年 | 185篇 |
1988年 | 80篇 |
1987年 | 76篇 |
1986年 | 89篇 |
1985年 | 243篇 |
1984年 | 218篇 |
1983年 | 173篇 |
1982年 | 166篇 |
1981年 | 294篇 |
1980年 | 77篇 |
1979年 | 66篇 |
1978年 | 70篇 |
1977年 | 63篇 |
1976年 | 53篇 |
1975年 | 73篇 |
1974年 | 60篇 |
1973年 | 57篇 |
1972年 | 68篇 |
1970年 | 54篇 |
排序方式: 共有9017条查询结果,搜索用时 15 毫秒
151.
Magnetic turbulence at the magnetopause, a key problem for understanding the solar wind/ magnetosphere exchanges 总被引:1,自引:0,他引:1
According to ideal MHD, the magnetopause boundary should split the terrestrial environment in two disconnected domains: outside, the solar wind (including its shocked part, the magnetosheath), and inside, the magnetosphere. This view is at variance with the experimental data, which show that the magnetopause is not tight and that a net transfer of matter exists from the solar wind to the magnetosphere; it implies that the frozen-in condition must break down on the magnetopause, either over the whole boundary or at some points. In the absence of ordinary collisions, only short scale phenomena (temporal and/or spatial) can be invoked to explain this breakdown, and the best candidates in this respect appear to be the ULF magnetic fluctuations which show very strong amplitudes in the vicinity of the magnetopause boundary. It has been shown that these fluctuations are likely to originate in the magnetosheath, probably downstream of the quasi-parallel shock region, and that they can get amplified by a propagation effect when crossing the magnetopause. When studying the propagation across the magnetopause boundary, several effects are to be taken into account simultaneously to get reliable results: the magnetopause density gradient, the temperature effects, and the magnetic field rotation can be introduced while remaining in the framework of ideal MHD. In these conditions, the magnetopause amplification has been interpreted in term of Alfvén and slow resonances occurring in the layer. When, in addition, one takes the ion inertia effects into account, by the way of the Hall-MHD equations, the result appears drastically different: no resonance occurs, but a strong Alfvén wave can be trapped in the boundary between the point where it is converted from the incident wave and the point where it stops propagating back, i.e., the point where k
\|=0, which can exist thanks to the magnetic field rotation. This effect can bring about a new interpretation to the magnetopause transfers, since the Hall effect can allow reconnection near this particular point. The plasma transfer through the magnetopause could then be interpreted in terms of a reconnection mechanism directly driven by the magnetosheath turbulence, which is permanent, rather than due to any local instability of the boundary, for instance of the tearing type, which should be subject to an instability threshold and thus, as far as it exists, more sporadic. 相似文献
152.
Active Spacecraft Potential Control Investigation 总被引:1,自引:0,他引:1
K. Torkar R. Nakamura M. Tajmar C. Scharlemann H. Jeszenszky G. Laky G. Fremuth C. P. Escoubet K. Svenes 《Space Science Reviews》2016,199(1-4):515-544
153.
In the above-titled paper (see ibid., vol.AES-23, p.568-82, July 1987) M.I. Dadi and J.R. Marks II studied the relative efficiencies of the Neyman-Pearson optimal detector with respect to the linear and sign detectors, for the detection of a constant signal in additive Laplace noise. By applying the central limit theorem, they derived expressions for three types of asymptotic relative efficiencies (AREs). However, as noted in the above paper, the Gaussian approximation to the sign detector fails to yield the correct asymptotic efficiency. The commenter derives the correct ARE of the optimal detector with respect to the sign detector for the Laplace noise 相似文献
154.
Rubertus D.P. Hunter L.D. Cecere G.J. 《IEEE transactions on aerospace and electronic systems》1984,(3):243-249
Electromechanical actuation is a critical element that must be developed and verified to make the all-electric aircraft a viable concept. For several years the Flight Control Division of the Air Force Wright Aeronautical Laboratories has sponsored activities to demonstrate the credibility of electromechanical actuation systems (EMAS) for primary flight control actuation functions. The foundation for these EMAS activities and several electromechanical actuation development programs are described here. One involves the design, fabrication, and laboratory test of a rotary, hingeline electromechanical actuator. Another involves the development and flight test demonstration of a linear electromechanical actuator for controlling an aileron of a C-141 aircraft. A third involves the design and development of a linear electromechanical actuator for missiles having severe performance, temperature, and volumetric requirements. In addition, a brief summary of the results from two aircraft actuation trade studies compare the baseline (conventional) hydraulic flight control system with an all-electric airplane concept including quantitative comparisons of weight, reliability and maintainability, and life cycle costs. 相似文献
155.
A satellite with electrodynamic stabilization system is considered. Based on the method of Lyapunov functions, sufficient conditions of the asymptotic stability of direct equilibrium position of this satellite in the orbital coordinate system under perturbing action of a gravitational moment are obtained. These conditions allow one to ensure a rational choice of parametric control coefficients depending on parameters of the satellite and its orbit. 相似文献
156.
Haimovich A.M. Yosko J. Greenberg R.J. Parisi M.A. Becker D. 《IEEE transactions on aerospace and electronic systems》1993,29(1):245-250
The case of data fusion of sensors dissimilar in their measurement/tracking errors is considered. It is shown that the fused track performance is similar whether the sensor data are fused at the track level or at the measurement level. The case of a cluster of targets, resolved by one sensor but not the other, is also considered. Under certain conditions the fused track may perform worse than the worst of the sensors. A remedy to this problem through modifications of the association algorithm is presented 相似文献
157.
P. Bobik K. Kudela M. Boschini D. Grandi M. Gervasi P.G. Rancoita 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(2):339-342
We developed a one dimensional model of particle transport in the heliosphere. As opposite to widely used models, we apply a method where a quasi-particle is traced back in time. The model gives us the possibility to work on the possible existence of reentrant particles in the heliosphere that can be hardly solved by the traditional forward tracking method. Particles escape from the heliosphere and may reenter back. We estimate how these particles affect the modulation process in the heliosphere. Presented here are the results for different values of particles mean free path in the interstellar space and for different interstellar magnetic field values. 相似文献
158.
We discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M0. The semi-major axes of orbits of pre-LMA do not exceed 20–25 R0. The rate of formation of Algol-type stars is 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M1/M2 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves. 相似文献
159.
R. Govind F.G. Lemoine J.J. Valette D. Chinn N. Zelensky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Geoscience Australia contributed a multi-satellite, multi-year weekly time series to the International DORIS Service combined submission for the construction of International Terrestrial Reference Frame 2008 (ITRF2008). This contributing solution was extended to a study of the capability of DORIS to dynamically estimate the variation in the geocentre location. Two solutions, comprising different constraint configurations of the tracking network, were undertaken. The respective DORIS satellite orbit solutions (SPOT-2, SPOT-4, SPOT-5 and Envisat) were verified and validated by comparison with those produced at the Goddard Space Flight Center (GSFC), DORIS Analysis Centre, for computational consistency and standards. In addition, in the case of Envisat, the trajectories from the GA determined SLR and DORIS orbits were compared. The results for weekly dynamic geocentre estimates from the two constraint configurations were benchmarked against the geometric geocentre estimates from the IDS-2 combined solution. This established that DORIS is capable of determining the dynamic geocentre variation by estimating the degree one spherical harmonic coefficients of the Earth’s gravity potential. It was established that constrained configurations produced similar results for the geocentre location and consequently similar annual amplitudes. For the minimally constrained configuration Greenbelt–Kitab, the mean of the uncertainties of the geocentre location were 2.3, 2.3 and 7.6 mm and RMS of the mean uncertainties were 1.9, 1.2 and 3.5 mm for the X, Y and Z components, respectively. For GA_IDS-2_Datum constrained configuration, the mean of the uncertainties of the geocentre location were 1.7, 1.7 and 6.2 mm and RMS of the mean uncertainties were 0.9, 0.7 and 2.9 mm for the X, Y and Z components, respectively. The mean of the differences of the two DORIS dynamic geocentre solutions with respect to the IDS-2 combination were 1.6, 4.0 and 5.1 mm with an RMS of the mean 21.2, 14.0 and 31.5 mm for the Greenbelt–Kitab configuration and 4.1, 3.9 and 4.3 mm with an RMS 8.1, 9.0 and 28.6 mm for the GA_IDS-2_Datum constraint configuration. The annual amplitudes for each component were estimated to be 5.3, 10.8 and 11.0 mm for the Greenbelt–Kitab configuration and 5.3, 9.3 and 9.4 mm for the GA_IDS-2_Datum constraint configuration. The two DORIS determined dynamic geocentre solutions were compared to the SLR determined dynamic solution (which was determined from the same process of the GA contribution to the ITRF2008 ILRS combination) gave mean differences of 3.3, −4.7 and 2.5 mm with an RMS of 20.7, 17.5 and 28.0 mm for the X, Y and Z components, respectively for the Greenbelt–Kitab configuration and 1.1, −5.4 and 4.4 mm with an RMS of 9.7, 13.3 and 24.9 mm for the GA_IDS-2_Datum configuration. The larger variability is reflected in the respective amplitudes. As a comparison, the annual amplitudes of the SLR determined dynamic geocentre are 0.9, 1.0 and 6.8 mm in the X, Y and Z components. The results from this study indicate that there is potential to achieve precise dynamically determined geocentre from DORIS. 相似文献
160.
A.I. Efimov V.K. Rudash L.N. Samoznaev M.K. Bird I.V. Chashei D. Plettemeier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit. 相似文献