首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3124篇
  免费   26篇
  国内免费   12篇
航空   1488篇
航天技术   1197篇
综合类   25篇
航天   452篇
  2021年   32篇
  2019年   16篇
  2018年   45篇
  2017年   25篇
  2016年   32篇
  2014年   67篇
  2013年   71篇
  2012年   72篇
  2011年   125篇
  2010年   90篇
  2009年   125篇
  2008年   169篇
  2007年   71篇
  2006年   69篇
  2005年   98篇
  2004年   105篇
  2003年   98篇
  2002年   58篇
  2001年   103篇
  2000年   58篇
  1999年   74篇
  1998年   101篇
  1997年   54篇
  1996年   93篇
  1995年   94篇
  1994年   82篇
  1993年   67篇
  1992年   89篇
  1991年   37篇
  1990年   31篇
  1989年   76篇
  1988年   34篇
  1987年   26篇
  1986年   30篇
  1985年   100篇
  1984年   78篇
  1983年   65篇
  1982年   78篇
  1981年   93篇
  1980年   25篇
  1979年   30篇
  1978年   32篇
  1977年   31篇
  1976年   24篇
  1975年   24篇
  1974年   22篇
  1973年   12篇
  1972年   15篇
  1970年   21篇
  1969年   22篇
排序方式: 共有3162条查询结果,搜索用时 78 毫秒
71.
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished.  相似文献   
72.
Wei J  Yan G  Zhao L  Duan R  Xiao F  Li D  Wu J 《Acta Astronautica》1995,36(8-12):649-655
To study the possible effect of simulated weightlessness on brain function state, the brain event-related potentials (ERPs) in a simple visual selective response task were compared between HDT and HUT in 9 normal subjects. The results were: The Target(T) and non-Target(NT) flash signals both induced significant slow positive potentials which were supposed to related to the attention state; the amplitude of the positive potentials in frontal regions decreased significantly especially for NT-ERPs during HDT comprared with that during HUT. The data reported provide new evidence indicating that more attention should be paid on the brain function study during space flight.  相似文献   
73.
The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day, prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could not be reversed by PE or rehydration in individuals subjected to prolonged restriction of motor activity.  相似文献   
74.
The radar designer must optimize parameters for performance in electronic countermeasures (ECM) and avoid any constraints which could be exploited by ECM. ECM/electronic counter-counter measures (ECCM) strategy must take into account electromagnetic compatibility (EMC) including enemy EMC. Electronic scanning improves search performance, but also reduces ECCM performance in other ways. While electronic scanning avoids some constraints, it imposes others, particularly in the frequency domain. It is argued that simple radars of good performance may be as cost effective in ECM as more complex systems. Some examples of recent developments are given.  相似文献   
75.
The estimation of a multimodal linear system whose mode-to-mode transitions are described by a finite-state Markov chain is described. The problem has application in studying separation standards in an air traffic control environment. An optimal solution is formulated which is computationally infeasible. A suboptimal estimator is then derived which closely approximates the optimal estimator. An example is presented to illustrate the technique.  相似文献   
76.
基于CFD技术的鼻腔输药的流动特性研究   总被引:1,自引:0,他引:1  
鼻腔输药作为一种新颖的输药方式,具有方便可靠的特点,不仅可以适用于局部而且适用于全身用药,已经受到广泛的重视。但由于人类的呼吸道复杂的立体结构使得鼻腔输药成为生物医药研究的一个长期的挑战。利用CFD(计算流体动力学,Computational Fluid Dynamics)技术对鼻腔输药的流动特性进行研究,对一个基于真实的人类鼻腔解剖的3D模型的输药的流动过程进行了分析,着重研究了不同的药物颗粒的流动和沉淀特性。利用CFD的商用软件FLUENT在层流情况下对不同的密度、直径和流动速率的药物颗粒在鼻腔中流动进行了数值模拟,并对计算结果进行了比较分析。CFD研究的结果为鼻腔输药这种新颖的药物输送方式的优化设计提供了依据。  相似文献   
77.
Two energetic events in the Earth’s magnetotail detected by Geotail are examined with detailed analysis of three-dimensional velocity phase space density. It is found that the occurrence of multiple ion components is high during these dynamic episodes. Different populations evolve independently of each other, suggesting particles from multiple activity sites contributing to the observed phase space density. The transport properties with consideration of multiple components are evaluated, with the result showing significant differences from those based on a single fluid approach. This comparison indicates that precise evaluation of the energy and magnetic flux transport of energetic events in the magnetotail requires resolving individual populations in the phase space density.  相似文献   
78.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
79.
Differential-game-based guidance law using target orientation observations   总被引:4,自引:0,他引:4  
Modern 4th generation air-to-air missiles are quite capable of dealing with today's battlefield needs. Advanced aerodynamics, highly efficient warheads and smart target acquisition systems combine to yield higher missile lethality than ever. However, in order to intercept highly maneuverable targets, such as future unmanned combat air vehicles (UCAV), or to achieve higher tracking precision for missiles equipped with smaller warheads, further improvement in the missile guidance system is still needed. A new concept is presented here for deriving improved differential-game-based guidance laws that make use of information about the target orientation, which is acquired via an imaging seeker. The underlying idea is that of using measurements of the target attitude as a leading indicator of target acceleration. Knowledge of target attitude reduces the reachable set of target acceleration, facilitating the computation of an improved estimate of the zero-effort miss (ZEM) distance. In consequence, missile guidance accuracy is significantly improved. The new concept is applied in a horizontal interception scenario, where it is assumed that the target maneuver direction, constituting a partial attitude information, can be extracted via processing target images, acquired by an imaging sensor. The derivation results in a new guidance law that explicitly exploits the direction of the target acceleration. The performance of the new guidance law is studied via a computer simulation, which demonstrates its superiority over existing state-of-the-art differential-game-based guidance laws. It is demonstrated that a significant decrease in the miss distance can be expected via the use of partial target orientation information.  相似文献   
80.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号