Abstract The survival strategies of one cyanobacteria colony and three terricolous lichen species from the hot subdesert of Tabernas, Spain, were studied along with topographical attributes of the area to investigate whether the protective strategies adopted by these pioneer soil colonizers are related to the environmental stressors under which they survive. A handheld Raman spectrometer was used for biomolecular characterization, while the microclimatic and topographic parameters were estimated with a Geographic Information System (GIS). We found that the survival strategies adopted by those organisms are based on different combinations of protective biomolecules, each with diverse ecophysiological functions, such as UV-radiation screening, free-energy quenching, antioxidants, and the production of different types and amounts of calcium oxalates. Our results show that the cyanobacteria community and each lichen species preferentially colonized a particular microhabitat with specific moisture and incident solar radiation levels and exhibited different adaptive mechanisms. In recent years, a number of studies have provided consistent results that suggest a link between the strategies adopted by those extremophile organisms and the microclimatic environmental parameters. To date, however, far too little attention has been paid to results from Raman analyses on dry specimens. Therefore, the results of the present study, produced with the use of our miniaturized instrument, will be of interest to future studies in astrobiology, especially due to the likely use of Raman spectroscopy at the surface of Mars. Key Words: Hot desert-Raman spectroscopy-Topography-Terricolous lichens-Cyanobacteria-Planetary exploration. Astrobiology 12, 743-753. 相似文献
To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film. 相似文献
We present new experimental results on the formation of oxidants, such as hydrogen peroxide, ozone, and carbonic acid, under ion irradiation of icy mixtures of water/carbon dioxide at different ratios and temperatures (16 and 80 K). Pure water ice layers and mixtures with carbon dioxide were irradiated by 200 keV He+ ions. We found that the CO(2)/H(2)O ratio progressively decreased to a value of about 0.1, the H(2)O(2) production increased with increasing CO(2) abundance at both 16 and 80 K, and the CO and H(2)CO(3) production increased with increasing CO(2) abundance at 16 K. At 80 K, the synthesis of CO was less efficient because of the high volatility of the molecule that partially sublimed from the target. The production of carbonic acid was connected with the production of CO(3). O(3) was detected only after ion irradiation of CO(2)-rich mixtures. The experimental results are discussed with regard to the relevance they may have in the production of an energy source for a europan or a martian biosphere. 相似文献
The goal of the study was to characterize the changes in neurovegetative control of the circulation, attending the presumed physiological and psychological stress originated by the isolation and confinement typical of the living condition of space stations, as simulated in a ground based unit, using time and frequency domain analysis. As a secondary goal we sought to verify the implementation of real time data acquisition, for off line spectral analisys of R-R interval, systolic arterial pressure (by Finapres) and respiration (by PVF2 piezoelectric sensors).
We addressed the cardiorespiratory and neurovegetative responses to standardized, simple Stressors (active standing, dynamic and static handgrip) on the EXEMSI 92 crew, before, during and after the isolation period.
On average the appropriate excitatory responses (to stand, dynamic and static handgrip) were elicited also in isolation and confinement.
Active standing and small masses muscular exercises are easy to be performed in a confined and isolated environment and provide a valuable tool for investigating the adaptational changes in neural control mechanisms.
The possibility there exists of using this time and frequency domain approach to monitor the level of performance and well being of the space crew in (quasi) real time. 相似文献
The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, \"Determine if life ever arose on Mars,\" has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here. 相似文献