全文获取类型
收费全文 | 91篇 |
免费 | 0篇 |
专业分类
航空 | 42篇 |
航天技术 | 31篇 |
航天 | 18篇 |
出版年
2022年 | 1篇 |
2021年 | 4篇 |
2019年 | 2篇 |
2017年 | 3篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 5篇 |
2011年 | 6篇 |
2010年 | 4篇 |
2009年 | 10篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 5篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1980年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有91条查询结果,搜索用时 15 毫秒
81.
Jae Weon Choi 《IEEE transactions on aerospace and electronic systems》1998,34(2):625-634
In the sense of eigenstructure (eigenvalues/eigenvectors) assignment, the effectiveness and disturbance suppressibility of a controller are mainly dependent on the left eigenstructure (eigenvalues/left eigenvectors) of a system. However, the disturbance decouplability is governed by the right eigenstructure (eigenvalues/right eigenvectors) of the system. In order to obtain a disturbance decouplable as well as effective and disturbance suppressible controller, a simultaneous assignment methodology of the right and left eigenstructures is proposed. The biorthogonality property between the left and right modal matrices of a system as well as the relations between the achievable right modal matrix and states selection matrices are used to develop the methodology. The proposed simultaneous eigenstructures assignment methodology guarantees that the desired eigenvalues are achieved exactly and the desired left and right eigenvectors are assigned to the best possible(achievable) sets of eigenvectors in the least square sense, respectively. An L-1011 flight control application is presented to illustrate the usefulness of the proposed methodology 相似文献
82.
83.
Tarter JC Backus PR Mancinelli RL Aurnou JM Backman DE Basri GS Boss AP Clarke A Deming D Doyle LR Feigelson ED Freund F Grinspoon DH Haberle RM Hauck SA Heath MJ Henry TJ Hollingsworth JL Joshi MM Kilston S Liu MC Meikle E Reid IN Rothschild LJ Scalo J Segura A Tang CM Tiedje JM Turnbull MC Walkowicz LM Weber AL Young RE 《Astrobiology》2007,7(1):30-65
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute. 相似文献
84.
Efficiency improvements using predictive and adaptive methods over satellite channels with weather-induced impairments are presented. Scintillation and rain attenuation are the two dominant factors for signal fading over satellite-Earth paths at operating frequencies over 10 GHz. We develop statistical and spectral analyses of these processes, and obtain simple linear predictors for received signal attenuation using autoregressive (AR) models. For adaptation, we propose changing signal transmission power, modulation symbol size, and/or code rate as the state of the channel changes. In particular, we introduce a continuous power control and discrete rate control strategy. Quantitative analyses of power consumption and channel capacity indicate that there can be a substantial gain in performance with such adaptive schemes. 相似文献
85.
Sang-Soon Yong Myungjin Choi Sung-Woong Ra 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The Multi-Spectral Camera (MSC) on the KOrea Multi-Propose SATellite (KOMPSAT)-2 was developed and launched as a main payload to provide a One(1) m panchromatic image and four(4) band four(4) m multi-spectral images at an altitude of 685 km covering a swath width of 15 km. These images, archived around the world, are a useful resource for space applications in agriculture, cartography, geology, forestry, regional planning, surveillance, and national security. The image quality of KOMPSAT-2 depends upon its image chain, which is comprised of an on-board system in the satellite and a processing system at the ground station. Therefore, in this study we determine the factors that have a major impact on the image quality through an investigation of the entire image chain. Consequently, two methods, involving a compression algorithm and a deconvolution technique, were determined as having a significant influence on the KOMPSAT-2 image quality. The compression algorithm of KOMPSAT-2 is rate-controlled JPEG-like algorithm that controls the mismatch between the input and output data rate. The ability to control the input/output data rate may be useful during the operation of the satellite but can also lower the overall image quality. The deconvolution technique may increase the sharpness of images, but it can also amplify the image noise level. Therefore, we propose methods of wavelet-based compression and denoising as an alternative to currently existing algorithms. Satisfactory results were obtained through experimentation with these two algorithms, and they are expected to be successfully implemented into the future KOMPSAT series to yield high-quality images for enhanced earth observation. 相似文献
86.
Piyush M. Mehta Craig A. McLaughlin Eric K. Sutton 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Drag coefficient is a major source of uncertainty in predicting the orbit of a satellite in low Earth orbit (LEO). Computational methods like the Test Particle Monte Carlo (TPMC) and Direct Simulation Monte Carlo (DSMC) are important tools in accurately computing physical drag coefficients. However, the methods are computationally expensive and cannot be employed real time. Therefore, modeling of the physical drag coefficient is required. This work presents a technique of developing parameterized drag coefficients models using the DSMC method. The technique is validated by developing a model for the Gravity Recovery and Climate Experiment (GRACE) satellite. Results show that drag coefficients computed using the developed model for GRACE agree to within 1% with those computed using DSMC. 相似文献
87.
One-dimensional hydrodynamic calculations have been done of 1E51 erg explosions in 15M stars. We have appended a steep external density gradient to the pre-supernova model of Weaver et al and find: (1) the outer shock wave decelerates throughout the pre-Sedov phase, (2) the expanding stellar envelope and the shocked interstellar material are Rayleigh-Taylor stable until the Sedov phase, and (3) steep internal density gradients are R-T unstable during the early expansion and may be the source of high velocity knots seen in Cas A. 相似文献
88.
Houssam Toutanji Christopher M. Goff Edwin Ethridge Eric Stokes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Recent discoveries of water ice trapped within lunar topsoil (regolith) have placed a new emphasis on the recovery and utilization of water for future space exploration. Upon heating the lunar ice to sublimation, the resulting water vapor could theoretically transmit through the lunar regolith, to be captured on the surface. As the permeability of lunar regolith is essential to this process, this paper seeks to experimentally determine the permeability and flow characteristics of various gas species through simulated lunar regolith (SLR). Two different types of SLR were compacted and placed into the permeability setup to measure the flow-rate of transmitted gas through the sample. Darcy’s permeability constant was calculated for each sample and gas combination, and flow characteristics were determined from the results. The results show that Darcy’s permeability constant varies with SLR compaction density, and identified no major difference in permeable flow between the several tested gas species. Between the two tested SLR types, JSC-1A was shown to be more permeable than NU-LHT under similar conditions. In addition, a transition zone was identified in the flow when the gas pressure differential across the sample was less than ∼40 kPa. 相似文献
89.
Paul R. Mahaffy Mehdi Benna Todd King Daniel N. Harpold Robert Arvey Michael Barciniak Mirl Bendt Daniel Carrigan Therese Errigo Vincent Holmes Christopher S. Johnson James Kellogg Patrick Kimvilakani Matthew Lefavor Jerome Hengemihle Ferzan Jaeger Eric Lyness John Maurer Anthony Melak Felix Noreiga Marvin Noriega Kiran Patel Benito Prats Eric Raaen Florence Tan Edwin Weidner Cynthia Gundersen Steven Battel Bruce P. Block Ken Arnett Ryan Miller Curt Cooper Charles Edmonson J. Thomas Nolan 《Space Science Reviews》2015,196(1-4):49-77
90.
Ehlmann BL Chowdhury J Marzullo TC Collins RE Litzenberger J Ibsen S Krauser WR DeKock B Hannon M Kinnevan J Shepard R Grant FD 《Acta Astronautica》2005,56(9-12):851-858
Mars is a compelling astrobiological target, and a human mission would provide an opportunity to collect immense amounts of scientific data. Exploration alone, however, cannot justify the increased risk. Instead, three factors drive a human mission: economics, education, and exploration. A human mission has a unique potential to inspire the next generation of young people to enter critically needed science and engineering disciplines. A mission is economically feasible, and the research and development program put in place for a human mission would propel growth in related high-technology industries. The main hurdles are human physiological responses to 1–2 years of radiation and microgravity exposure. However, enabling technologies are sufficiently mature in these areas that they can be developed within a few decade timescale. Hence, the decision of whether or not to undertake a human mission to Mars is a political decision, and thus, educational and economic benefits are the crucial factors. 相似文献