全文获取类型
收费全文 | 91篇 |
免费 | 0篇 |
专业分类
航空 | 42篇 |
航天技术 | 31篇 |
航天 | 18篇 |
出版年
2022年 | 1篇 |
2021年 | 4篇 |
2019年 | 2篇 |
2017年 | 3篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 5篇 |
2011年 | 6篇 |
2010年 | 4篇 |
2009年 | 10篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 5篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1980年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有91条查询结果,搜索用时 0 毫秒
11.
Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude 总被引:8,自引:0,他引:8
Eric L. Fleming Sushil Chandra J. J. Barnett M. Corney 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1990,10(12):11-59
The new zonal mean COSPAR International Reference Atmosphere (CIRA-86) of temperature, zonal wind, and geopotential/geometric height is presented. This data can be used as a function of altitude or pressure and has nearly pole-to-pole coverage (80°S-80°N) extending from the ground to approximately 120 km. Data sources and methods of computation are described; in general, hydrostatic and thermal wind balance are maintained at all levels and latitudes. As shown by a series of cross sectional plots, the new CIRA accurately reproduces most of the characteristic features of the atmosphere such as the equatorial wind and the general structure of the tropopause, stratopause, and mesopause. 相似文献
12.
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations. 相似文献
13.
The Radarsat Earth-observation satellite was launched on November 4, 1995 aboard a Delta 2 rocket. Equipped with a sophisticated synthetic aperture radar (SAR), Radarsat can produce images of extraordinary clarity even through clouds, smog, haze, smoke, and darkness. The SAR has a variety of operating modes. It can be adjusted to produce swathes between 35 and 500 km in width, with ground resolutions from 100 m to as low as eight. In addition, the beam can be steered at angles up to 49° from the satellite's nadir vector, giving it the unique ability to image areas it is not directly overflying. In exchange for the launch, CSA agreed to provide NASA with access to the SAR data, and to execute a 180° yaw-around of Radarsat twice during its lifetime to map the Antarctic continent. Preliminary results from the first of these Antarctic Mapping Missions, dubbed AMM-1, are presented 相似文献
14.
Young Chang Choi Kyung-Ho Noh Jae-Woo Lee Yung-Hwan Byun Bong-Kyo Park 《Aerospace Science and Technology》2009,13(7):406-414
Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. For the selection of the best system alternative, a trade study for the first stage engine type and launching speeds is performed using a sequential optimization technique, confirming the feasibility of the baseline air-launching rocket. Then, a system design has been performed using the multi-disciplinary feasible (MDF) design optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. As a result of multi-disciplinary system optimization, a supersonic air launching rocket with total mass of 1244.9 kg, total length of 6.36 m, outer diameter of 0.60 m has been successfully designed to launch a satellite of 7.5 kg to the 700 km circular orbit. 相似文献
15.
Dong-Yoon Kim Byoungsam Woo Sang-Young Park Kyu-Hong Choi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1257-1269
A hybrid optimization method is developed for fuel-optimal reconfigurations of a group of satellites flying in formation. The genetic algorithm performs a global search to find two-impulse trajectories, and primer vector analysis finds multiple-impulsive local optimal trajectories with the two-impulse trajectories as initial guesses. Hybrid optimization finds globally optimal trajectories for formation reconfigurations, including formation resizing, reassignment and reorientation maneuvers. Multiple-impulse trajectories reduce the fuel consumption from the two-impulse trajectories by up to 4.4% for those maneuvers. In real missions, satellites can follow two-impulse trajectories to gain the advantage of a smaller number of impulses, with the cost of slightly more propellant. The qualitative characteristics of the optimal trajectories are analyzed from the number of optimal trajectories found by hybrid optimization. 相似文献
16.
Mohamed Khalil Ben-Larbi Kattia Flores Pozo Tom Haylok Mirue Choi Benjamin Grzesik Andreas Haas Dominik Krupke Harald Konstanski Volker Schaus Sándor P. Fekete Christian Schurig Enrico Stoll 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(11):3598-3619
17.
Beasley Eric W. Ward Harold R. 《IEEE transactions on aerospace and electronic systems》1968,(3):468-473
A brief statement of the sea clutter problem in surface-search radar operation illustrates the need for some form of signal-to-clutter enhancement. Post-detection integration used in the simpler radars is limited by the pulse-to-pulse correlation of the clutter. Analysis of the effect of changing frequency from pulse to pulse leads to an expression for the correlation between pulses in the sequence. Knowing this correlation, the reduction in the fluctuating clutter component produced by integration can be determined. This is described by an equivalent number of independent pulses, Nc. For the particular case of sinusoidal modulation of the transmitted frequency, N6 is computed. The critical dependecne of Nc upon the modulating frequency fm is illustrated by spectrum photographs. Choice of an optimum fm is discussed. The results of computations of N4 for optimum fm are presented as a family of normalized curves. These data permit the tradeoff of the radar parameters against their quantitative effect on radar performance. 相似文献
18.
The effects of proton radiation on UHMWPE material properties for space flight and medical applications 总被引:1,自引:0,他引:1
Chad S. Cummings Eric M. LucasJustin A. Marro Tri M. KieuJohn D. DesJardins 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymer widely used as a radiation shielding material in space flight applications and as a bearing material in total joint replacements. As a long chain hydrocarbon based polymer, UHMWPE’s material properties are influenced by radiation exposure, and prior studies show that gamma irradiation is effective for both medical sterilization and increased wear resistance in total joint replacement applications. However, the effects of space flight radiation types and doses on UHMWPE material properties are poorly understood. In this study, three clinically relevant grades of UHMWPE (GUR 1020, GUR 1050, and GUR 1020 blended with Vitamin E) were proton irradiated and tested for differences in material properties. Each of the three types of UHMWPE was irradiated at nominal doses of 0 Gy (control), 5 Gy, 10 Gy, 20 Gy, and 35 Gy. Following irradiation, uniaxial tensile testing and thermal testing using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were performed. Results show small but significant changes in several material properties between the control (0 Gy) and 35 Gy samples, indicating that proton irradiation could have a effect on the long term performance of UHMWPE in both medical and space flight applications. 相似文献
19.
20.
Byungcho Choi Wonseok Lim Seungwon Choi 《IEEE transactions on aerospace and electronic systems》2001,37(3):1099-1107
The theoretical and practical details involved in the control design and closed-loop analysis of a step-down switched-capacitor (SC) DC-to-DC converter are presented. The state-space averaging technique is applied to extract the small-signal dynamics of the power stage, and a graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of an SC converter. The results of the control design and closed-loop analysis are substantiated by experiments using a prototype SC converter 相似文献