首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7205篇
  免费   25篇
  国内免费   16篇
航空   3688篇
航天技术   2358篇
综合类   193篇
航天   1007篇
  2021年   55篇
  2019年   45篇
  2018年   114篇
  2017年   65篇
  2016年   68篇
  2014年   121篇
  2013年   148篇
  2012年   162篇
  2011年   241篇
  2010年   164篇
  2009年   271篇
  2008年   309篇
  2007年   171篇
  2006年   140篇
  2005年   156篇
  2004年   170篇
  2003年   215篇
  2002年   229篇
  2001年   284篇
  2000年   145篇
  1999年   179篇
  1998年   221篇
  1997年   152篇
  1996年   203篇
  1995年   243篇
  1994年   219篇
  1993年   133篇
  1992年   174篇
  1991年   85篇
  1990年   90篇
  1989年   182篇
  1988年   90篇
  1987年   84篇
  1986年   77篇
  1985年   219篇
  1984年   187篇
  1983年   162篇
  1982年   175篇
  1981年   206篇
  1980年   79篇
  1979年   68篇
  1978年   73篇
  1977年   56篇
  1976年   52篇
  1975年   75篇
  1974年   61篇
  1972年   77篇
  1971年   59篇
  1970年   41篇
  1969年   45篇
排序方式: 共有7246条查询结果,搜索用时 265 毫秒
921.
The case of data fusion of sensors dissimilar in their measurement/tracking errors is considered. It is shown that the fused track performance is similar whether the sensor data are fused at the track level or at the measurement level. The case of a cluster of targets, resolved by one sensor but not the other, is also considered. Under certain conditions the fused track may perform worse than the worst of the sensors. A remedy to this problem through modifications of the association algorithm is presented  相似文献   
922.
Interaction of shocks with a current sheet is investigated within a 2D MHD model based on an improved FCT numerical scheme. Basic parameters of the problem are chosen to correspond to situations in the solar corona with low plasma β and moderate shock strength. Slow and fast MHD shocks are introduced with shock normal parallel to magnetic field lines. The interaction with the current sheet causes distortion of the shock front and this distorts the magnetic field lines and generates electric current. Large current densities are generated especially when the fast MHD shock becomes the intermediate MHD shock at the current sheet. Then peak values of the current density are about 3–4 times larger than the initial undisturbed values in the current sheet.  相似文献   
923.
Sustained research and development at Memorial University of Newfoundland has led to an operational High Frequency Ground Wave Radar (HF-GWR) system for coastal surveillance. This radar system has demonstrated over-the-horizon detection of targets such as vessels, ice hazards and low-flying aircraft, and performed ocean parameter measurements over a large area. The industrial developers of offshore hydrocarbon reserves in ice infested regions have an urgent requirement for the long range detection and tracking of icebergs from their production platforms. However, due to space restrictions, a rig- or ship-based system can only accommodate a compact antenna array. The uniform trajectory and low velocity of icebergs is ideal for Reciprocal Synthetic Aperture Radar (RSAR) processing with long target dwell times. The proven ice detection capability of HF-GWR systems, coupled with the compact antennas suggested by the RSAR technique, can be used to develop a rig- or ship-based all-weather surveillance device for ice hazards. It is also anticipated that the results of this research will allow the use of shorter antenna arrays for many other applications. Preliminary results using real data from the operational HF-GWR system are presented  相似文献   
924.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals.  相似文献   
925.
A quantitative comparison of the products arising from the irradiation of a Titan's simulated atmosphere is presented. The energy sources used represent some of the main events that occur in the satellite's atmosphere. All of the compounds identified are classified in the hydrocarbon and nitrile chemical families. Almost all of the detected compounds in Titan's atmosphere are produced by one or more energy sources. The compounds with the highest energy yields include the C2 hydrocarbons, methanonitrile and ethanonitrile. The possibility of using some of the produced organics as tracer compounds during the Huygens descend to identify the leading energy form in the different atmospheric levels remains open.  相似文献   
926.
Thin films containing a mixture of aliphatic (glycine) and aromatic (tryptophan or tyrosine) amino acids were exposed to a vacuum ultraviolet radiation (VUV) with wavelenghts 100–200 nm. Dipeptides (glycyl-tryptophan and glycyl-tyrosine) were synthesized in these conditions. We compared the actions of VUV and γ-radiation. Polymerization is an essential step in prebiological evolution and we have shown that this stage probably occured over an early Solar system history.  相似文献   
927.
As the human exploration of space has received new attention in the United States, studies find that exposure to space radiation could adversely impact the mission design. Galactic Cosmic Radiation (GCR), with its very wide range of charges and energies, is particularly important for a mission to Mars, because it imposes a stiff mass penalty for spacecraft shielding. Dose equivalent versus shielding thickness calculations, show a rapid initial drop in exposure with thickness, but an asymptotic behavior at a higher shielding thickness. Uncertainties in the radiobiology are largely unknown. For a fixed radiation risk, this leads to large uncertain ties in shielding thickness for small uncertainties in estimated dose. In this paper we investigate the application of steady-state, spherically-symmetric diffusion-convection theory of solar modulation to individual measurements of differential energy spectra from 1954 to 1989 in order to estimate the diffusion coefficient, kappa (r,t), as a function of time. We have correlated the diffusion coefficient to the Climax neutron monitor rates and show that, if the diffusion coefficient can be separated into independent functions of space and time: kappa (-r,t)=K(t)kappa 0 beta P kappa 1(r), where beta is the particle velocity and P the rigidity, then (i) The time dependent quantity 1/K(t), which is proportional to the deceleration potential, phi(r,t), is linearly related to the Climax neutron monitor counting rate. (ii) The coefficients obtained from hydrogen or helium intensity measurements are the same. (iii) There are different correlation functions for odd and even solar cycles. (iv) The correlation function for the Climax neutron monitor counting rate for given time, t, can be used to estimate mean deceleration parameter phi(t) to within +/- 15% with 90% confidence. We have shown that kappa(r,t) determined from hydrogen and/or helium data, can be used to fit the oxygen and iron differential energy spectra with a root mean square error of about +/- 10%, and essentially independent of the particle charge or energy. We have also examined the ion chamber and 14C measurements which allow the analysis to be extended from the year 1906 to 1990. Using this model we have defined reference GCR spectra at solar minimum and solar maximum. These can be used for space exploration studies and provide a quantitative estimate of the error in dose due to changes in GCR intensities.  相似文献   
928.
An approach for fusing offboard track-level data at a central fusion node is presented. The case where the offboard tracker continues to update its local track estimate with measurement and system dynamics models that are not necessarily linear is considered. An algorithm is developed to perform this fusion at a central node without having access to the offboard measurements, their noise statistics, or the location of the local estimator. The algorithm is based on an extension of results that were originally established for linear offboard trackers. A second goal of this work is to develop an inequality constraint for selecting the proper sampling interval for the incoming state estimates to the fusion node. This interval is selected to allow use of conventional Kalman filter algorithms at the fusion node without suffering error performance degradation due to processing a correlated sequence of track state estimates  相似文献   
929.
Time period from October 1996 until January 1998 was checked on high energy resolution DOK2 energetic particle instrument measurements on Interball-1 and Interball-2 for the ion (> 20 keV) dispersive events (EDIS) with the exclusion of Interball-1 orbit parts in the tail. A variety of energy dispersive events, both in ion and electron spectra with different duration is found in the auroral regions, in the outer magnetosphere and near the cusp. While EDIS were observed in all sectors of MLT, the best conditions for their observation were in the afternoon local time. The characteristics of dispersive events observed by DOK2 are consistent with their explanation by the gradient-curvature drift of particles from the injection point(s) in the night local time sector given in Lutsenko at al., 2000a, b.  相似文献   
930.
Solar oscillations provide the most accurate measures of cycle dependent changes in the sun, and the Solar and Heliospheric Observatory/Michelson Doppler Imager (MDI) data are the most precise of all. They give us the opportunity to address the real challenge — connecting the MDI seismic measures to observed characteristics of the dynamic sun. From inversions of the evolving MDI data, one expects to determine the nature of the evolution, through the solar cycle, of the layers just beneath the sun's surface. Such inversions require one to guess the form of the causal perturbation — usually beginning with asking whether it is thermal or magnetic. Matters here are complicated because the inversion kernels for these two are quite similar, which means that we don't have much chance of disentangling them by inversion. However, since the perturbation lies very close to the solar surface, one can use synoptic data as an outer boundary condition to fix the choice. It turns out that magnetic and thermal synoptic signals are also quite similar. Thus, the most precise measure of the surface is required.

We argue that the most precise synoptic data come from the Big Bear Solar Observatory (BBSO) Solar Disk Photometer (SDP). A preliminary analysis of these data implies a magnetic origin of the cycle-dependent sub-surface perturbation. However, we still need to do a more careful removal of the facular signal to determine the true thermal signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号