首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7691篇
  免费   38篇
  国内免费   42篇
航空   3557篇
航天技术   2848篇
综合类   23篇
航天   1343篇
  2021年   68篇
  2019年   51篇
  2018年   147篇
  2017年   108篇
  2016年   92篇
  2015年   43篇
  2014年   173篇
  2013年   207篇
  2012年   204篇
  2011年   284篇
  2010年   188篇
  2009年   340篇
  2008年   385篇
  2007年   230篇
  2006年   182篇
  2005年   228篇
  2004年   218篇
  2003年   254篇
  2002年   170篇
  2001年   250篇
  2000年   163篇
  1999年   181篇
  1998年   212篇
  1997年   156篇
  1996年   206篇
  1995年   256篇
  1994年   255篇
  1993年   124篇
  1992年   190篇
  1991年   77篇
  1990年   75篇
  1989年   178篇
  1988年   63篇
  1987年   63篇
  1986年   86篇
  1985年   230篇
  1984年   200篇
  1983年   147篇
  1982年   177篇
  1981年   218篇
  1980年   60篇
  1979年   50篇
  1978年   57篇
  1977年   53篇
  1976年   41篇
  1975年   52篇
  1974年   53篇
  1973年   41篇
  1970年   41篇
  1969年   41篇
排序方式: 共有7771条查询结果,搜索用时 15 毫秒
361.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   
362.
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.  相似文献   
363.
A key aspect for understanding the astrobiological potential of planets and moons in the Solar system is the analysis of material embedded in or underneath icy layers on the surface. In particular in case of the icy crust of Jupiters moon Europa such investigation would be of greatest interest. For a Europa lander to be launched in the 2020–2030 timeframe, we propose to use a simplified instrumented melting probe which is able to access and sample depths of a few meters without the necessity of heavy and complicated drilling equipment.  相似文献   
364.
The detection of a bright optical emission measured with good temporal resolution during the prompt phase makes GRB 060111B a rare event that is especially useful for constraining theories of the prompt optical emission. Comparing this burst with other GRBs with evidence of optical peaks, we find that the optical peak epoch (tp) is anti-correlated with the high energy burst energetic assuming an isotropic energy release (Eiso) in agreement with Liang et al. (2009), and that the steeper is the post-peak afterglow decay, the less is the agreement with the correlation. GRB 060111B is among the latters and it does not match the correlation. The Cannonball scenario is also discussed and we find that this model cannot be excluded for GRB 060111B.  相似文献   
365.
Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)).The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup(V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors.Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one.  相似文献   
366.
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400?m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ?70°N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.  相似文献   
367.
In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation.  相似文献   
368.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   
369.
Time-dependent cosmic ray modulation is calculated over multiple solar cycles using our well established two-dimensional time-dependent modulation model. Results are compared to Voyager 1, Ulysses and IMP cosmic ray observations to establish compatibility. A time-dependence in the diffusion and drift coefficients, implicitly contained in recent expressions derived by , ,  and , is incorporated into the cosmic ray modulation model. This results in calculations which are compatible with spacecraft observations on a global scale over consecutive solar cycles. This approach compares well to the successful compound approach of Ferreira and Potgieter (2004). For both these approaches the magnetic field magnitude, variance of the field and current sheet tilt angle values observed at Earth are transported time-dependently into the outer heliosphere. However, when results are compared to observations for extreme solar maximum, the computed step-like modulation is not as pronounced as observed. This indicates that some additional merging of these structures into more pronounced modulation barriers along the way is needed.  相似文献   
370.
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号