Several low-cost gyro-stabilized, bang-bang seeker assemblies for missile guidance and tracking applications have used similar physical structures. A magnetic dipole is an integral part of the gyro rotor assembly. The nominal spin axis of the gyro is colinear with the axis of a cylinder about which is wound a helix of wire. By properly modulating the current that is passed through that helix, the precession torque acting upon the gyroscope is controlled. One rather generalized model of such a seeker assembly is modeled, the equations of motion are derived, and the dominant error sources are identified and parametrically evaluated. Because this is such a commonly encountered structure, yet no such analysis has been published, to the author's knowledge, it is hoped that this is a useful contribution to the literature. 相似文献
Prominent among the commonly encountered gyro-stabilized assemblies used in guidance and tracking are those which are eddy-current torqued. Although eddy-current-torquecd lead- computing gunsights, which use spinning mirrors, have been well known for thirty years, it has been difficult to find an analysis of the torques developed by the precession mechanism. In this paper a model configuration of the torquer is presented. The total gyro dynamics are then determined by including these torque terms in the model presented in the preceding paper. 相似文献
Previous attempts to identify aircraft stability and control derivatives from flight test data, using three-degrees-of-freedom (3-DOF) longitudinal or lateral-directional perturbation equation-of-motion models, suffer from the disadvantage that the coupling between the longitudinal and lateral-directional dynamics has been ignored. In this paper, the identification of aircraft stability parameters is accomplished using a more accurate 6-DOF model which includes this coupling. Hierarchical system identification theory is used to reduce the computational effort involved. The 6-DOF system of equations is first decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and the other for the lateral-directional dynamics. The two subsystem parameter identification processes are then coordinated in such a way that the overall system parameter identification problem is solved. Next, a six-subsystem decomposition is considered. Computational considerations and comparison with the unhierarchically structured problem are presented. 相似文献
The sensitivity of observed data to an unknown parameter is enhanced by utilizing optimal inputs. The derivation is given for the optimal input of an nth-order nonlinear differential equation. To obtain the optimal input, the solution of 4n two-point boundary value equations is required. Numerical resutis are given for a second order linear example. The optimal return is compared with the return obtained for a step input. The existence of a critical time length is demonstrated. 相似文献
This paper examines the capabilities of the class of linear FM spread-spectrum signals within the context of potential communications systems usage in order to establish some performance criteria and bounds that permit comparison with other spread-spectrum formats. A systematic basis is provided for parameter selection for this class of signals by examining the interaction a mong the frequency-modulation indices, time-bandwidth product, and cross-talk criteria that determine the number of effective linear FM signals (or channels) that can be used within the constraints of a bounded time-frequency region. A general expression is derived relating N, the number of useful signals, R2, a cross-talk parameter, ToWo, the mean time-bandwidth product, and ?max and ?min, the maximum and minimum FM rates of the signal set. Canonic signal processor structures are described for ensembles of linear FM signals that have either constant duration or constant bandwidth. It is then shown that the signal modulation format can be modified in accordance with classical paired-echo theory to expand the utility of this class of signals in both synchronous and nonsynchronous operations to yield the equivalent of time-division and code multiplexing. Possible applications for this signal format are discussed. 相似文献
We discuss the random walk of magnetic field lines in astrophysical plasmas. Based on the standard theory of field line diffusion we show that there are two asymptotic limits. In these limits field line wandering is universal because in both regimes the field line diffusion coefficient depends only on fundamental length scales and absolute magnetic field strengths. As examples we discuss the field line diffusion coefficient for different prominent turbulence models namely the slab model, the two-dimensional model, and the Goldreich–Sridhar model. We show that the field line diffusion coefficient for the latter model agrees with the results obtained for slab and two-dimensional turbulence in limiting cases. We also discuss the transport of energetic particles perpendicular with respect to the mean magnetic field. Based on the unified nonlinear transport theory we consider again asymptotic limits. It is shown that one can identify four different regimes in which the transport is again universal. In all four cases perpendicular transport only depends on fundamental length scales of turbulence, magnetic field values, and the parallel diffusion coefficient. 相似文献
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface. 相似文献
The basic physical processes that lead to the long-term modulation of cosmic rays by the solar wind have been known for many years. However our knowledge of the structure of the heliosphere, which determines which processes are most important for the modulation, and of the variation of this structure with time and solar activity level is still incomplete. Study of the modulation provides a tool for probing the scale and structure of the heliosphere. While the Pioneer and Voyager spacecraft are surveying the radial structure and extent of the heliosphere at modest heliographic latitudes, theUlysses mission is the first to undertake a nearly complete scan of the latitudinal structure of the modulated cosmic ray intensity in the inner heliosphere (R<5.4 AU).Ulysses will reach latitudes of 80°S in September 1994 and 80°N in July 1995 during the approach to minimum activity in the 11 year solar cycle. We present a first report of measurements extending to latitudes of 52°S, which show surprisingly little latitudinal effect in the modulated intensities and suggest that at this time modulation in the inner heliosphere may be much more spherically symmetric than had generally been believed based upon models and previous observations. 相似文献
In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.