首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3256篇
  免费   23篇
  国内免费   13篇
航空   1577篇
航天技术   1146篇
综合类   4篇
航天   565篇
  2021年   26篇
  2019年   23篇
  2018年   54篇
  2017年   51篇
  2016年   45篇
  2015年   26篇
  2014年   71篇
  2013年   91篇
  2012年   82篇
  2011年   119篇
  2010年   79篇
  2009年   137篇
  2008年   153篇
  2007年   99篇
  2006年   71篇
  2005年   92篇
  2004年   90篇
  2003年   99篇
  2002年   72篇
  2001年   115篇
  2000年   65篇
  1999年   68篇
  1998年   87篇
  1997年   58篇
  1996年   93篇
  1995年   112篇
  1994年   111篇
  1993年   48篇
  1992年   71篇
  1991年   34篇
  1990年   32篇
  1989年   80篇
  1988年   28篇
  1987年   24篇
  1986年   33篇
  1985年   90篇
  1984年   90篇
  1983年   65篇
  1982年   66篇
  1981年   99篇
  1980年   19篇
  1979年   25篇
  1978年   29篇
  1977年   27篇
  1975年   29篇
  1974年   23篇
  1973年   21篇
  1972年   20篇
  1969年   20篇
  1968年   18篇
排序方式: 共有3292条查询结果,搜索用时 62 毫秒
371.
372.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
373.
Flowgraph techniques are extended to systems with piecewise-linear characteristics by developing criteria for construction of an optimum model from related subregions in which linearity holds. This requires the synthesis of several known techniques and results in a wide range of useful applications including: 1) devices with nonlinear characteristics which may be considered as linear over certain subregions; 2) networks whose response to changes in applied signal frequency or magnitude may be approximated by piecewise-linear asymptotes; 3) systems processing two or more signals simultaneously with different transfer or immitance characteristics for each signal; 4) circuits approximated by different equivalent circuits depending on the numerical values of critical parameters. Representative examples will illustrate these and similar applications. Procedures are presented to provide a logical, orderly, and effective approach to construct a model, to determine figures of merit, and to optimize the model for a prescribed region of operation or for a desired range of parameters.  相似文献   
374.
375.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
376.
In this paper, a process of flanging to create thin-walled axisymmetrical shells with the shape of truncated cone is analyzed. Also presented are some dependences that make it possible to determine the relative depth of a formed piece at the given piece-blank thickness ratio.  相似文献   
377.
Interstellar material is highly processed when subjected to the physical conditions that prevail in the inner regions of protoplanetary disks, the potential birthplace of habitable planets. Polycyclic aromatic hydrocarbons (PAHs) are abundant in the interstellar medium, and they have also been observed in the disks around young stars, with evidence for some modification in the latter. Using a chemical model developed for sooting flames, we have investigated the chemical evolution of PAHs in warm (1000–2000 K) and oxygen-rich (C/O < 1) conditions appropriate for the region where habitable planets may eventually form. Our study focuses on (1) delineating the conditions under which PAHs will react and (2) identifying the key reaction pathways and reaction products characterizing this chemical evolution. We find that reactions with H, OH and O are the main pathways for destroying PAHs over disk timescale at temperatures greater than about 1000 K. In the process, high abundances of C2H2 persist over long timescales due to the kinetic inhibition of reactions that eventually drive the carbon into CO, CO2 and CH4. The thermal destruction of PAHs may thus be the cause of the abundant C2H2 that has been observed in disks. We propose that protoplanetary disks have a ‘soot line’, within which PAHs are irreversibly destroyed via thermally-driven reactions. The soot line will play an important role, analogous to that of the ‘snow line’, in the bulk carbon content of meteorites and habitable planets.  相似文献   
378.
A possibility of evaluating dynamic response of a mechanical system to controlling actions of the automatic stabilization and control system is considered on the basis of a numerical experiment. Examples of design analysis are presented for a light-weight helicopter in which an autopilot is part of the control system. The finite element analysis is used in this paper.  相似文献   
379.
The Radarsat Earth-observation satellite was launched on November 4, 1995 aboard a Delta 2 rocket. Equipped with a sophisticated synthetic aperture radar (SAR), Radarsat can produce images of extraordinary clarity even through clouds, smog, haze, smoke, and darkness. The SAR has a variety of operating modes. It can be adjusted to produce swathes between 35 and 500 km in width, with ground resolutions from 100 m to as low as eight. In addition, the beam can be steered at angles up to 49° from the satellite's nadir vector, giving it the unique ability to image areas it is not directly overflying. In exchange for the launch, CSA agreed to provide NASA with access to the SAR data, and to execute a 180° yaw-around of Radarsat twice during its lifetime to map the Antarctic continent. Preliminary results from the first of these Antarctic Mapping Missions, dubbed AMM-1, are presented  相似文献   
380.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号