首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3264篇
  免费   23篇
  国内免费   13篇
航空   1578篇
航天技术   1147篇
综合类   4篇
航天   571篇
  2021年   26篇
  2019年   23篇
  2018年   54篇
  2017年   51篇
  2016年   45篇
  2015年   26篇
  2014年   72篇
  2013年   91篇
  2012年   82篇
  2011年   122篇
  2010年   79篇
  2009年   142篇
  2008年   154篇
  2007年   99篇
  2006年   71篇
  2005年   92篇
  2004年   90篇
  2003年   99篇
  2002年   72篇
  2001年   115篇
  2000年   65篇
  1999年   68篇
  1998年   87篇
  1997年   58篇
  1996年   94篇
  1995年   112篇
  1994年   111篇
  1993年   48篇
  1992年   71篇
  1991年   34篇
  1990年   32篇
  1989年   76篇
  1988年   29篇
  1987年   24篇
  1986年   33篇
  1985年   90篇
  1984年   90篇
  1983年   65篇
  1982年   66篇
  1981年   99篇
  1980年   19篇
  1979年   25篇
  1978年   29篇
  1977年   27篇
  1975年   29篇
  1974年   23篇
  1973年   21篇
  1972年   20篇
  1969年   20篇
  1968年   18篇
排序方式: 共有3300条查询结果,搜索用时 31 毫秒
951.
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component (Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays appears to be viable.  相似文献   
952.
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions, and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection of incoming particles.  相似文献   
953.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
954.
955.
The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s–1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s–1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (detail in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.  相似文献   
956.
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind.  相似文献   
957.
The relative abundances of low energy ions (0.6–2.0 MeV/n) in solar energetic particle (SEP) and corotating interaction region (CIR) events have been measured by the EPAC experiment aboard Ulysses since launch in October 1990 until the present time. We give an overview of the abundances of heavy ions (He, C, Ne, Fe) relative to oxygen during energetic particle events lasting longer than 5 days during the in- and out-of-ecliptic phase of the mission. While the period Oct. 1990 to Aug. 1992 was dominated by high solar activity the Ulysses out of ecliptic passage at solar latitudes up to 45° went parallel to the declining phase of solar activity. Thus a very clear structure of corotating interaction regions was observed. While the in-ecliptic composition is in general agreement with measurements made near the Earth, the development of the CIR-composition shows two phases: From Aug. 1992 to May 1993 the C/O-ratio is 0.55–0.70, afterwards it increases to 0.8–0.9. This increase is correlated to the disappearance of the current sheet at 30° solar latitude reported by Smithet al. (1993).  相似文献   
958.
959.
跨声速翼型绕流的Euler/边界层方程干扰数值解   总被引:2,自引:0,他引:2  
本文利用Euler方程和可压缩湍流边界层积分方程研究绕跨声速翼型的有粘与无粘强干扰流动。应用有限差分法在贴体的网格上求解时间相关的Euler方程,以剪功积分方法求解翼面贴附和分离湍流边界层流动,并引入一个松弛方程描述剪应力对上游湍流历程的延迟响应。有粘/无粘干扰采用表面源模型。计算结果表明,对翼面存在强干扰流动情况,获得了与实验值基本吻合的结果。  相似文献   
960.
高立新  蔡峨 《推进技术》1993,14(5):31-38
引用均质材料的冲蚀疲劳理论,研究了碳/酚醛材料应用在固体火箭发动机喉衬情况下的侵蚀特性;分别对无碳化层和有碳化层两种状态进行了分析和计算。综合热化学烧蚀计算与实验对比,得到粒子冲蚀的定性定量结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号