首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5752篇
  免费   29篇
  国内免费   21篇
航空   2567篇
航天技术   1903篇
综合类   22篇
航天   1310篇
  2021年   54篇
  2019年   34篇
  2018年   164篇
  2017年   133篇
  2016年   137篇
  2015年   59篇
  2014年   153篇
  2013年   188篇
  2012年   185篇
  2011年   245篇
  2010年   186篇
  2009年   284篇
  2008年   290篇
  2007年   202篇
  2006年   130篇
  2005年   166篇
  2004年   156篇
  2003年   187篇
  2002年   136篇
  2001年   199篇
  2000年   90篇
  1999年   114篇
  1998年   133篇
  1997年   93篇
  1996年   125篇
  1995年   172篇
  1994年   156篇
  1993年   70篇
  1992年   111篇
  1991年   42篇
  1990年   47篇
  1989年   107篇
  1988年   37篇
  1987年   37篇
  1986年   43篇
  1985年   137篇
  1984年   135篇
  1983年   104篇
  1982年   98篇
  1981年   163篇
  1980年   42篇
  1979年   38篇
  1978年   41篇
  1977年   36篇
  1976年   27篇
  1975年   42篇
  1974年   33篇
  1973年   26篇
  1972年   31篇
  1971年   27篇
排序方式: 共有5802条查询结果,搜索用时 540 毫秒
381.
After more than two years of operation, the imaging γ-ray SIGMA telescope has accumulated several days of observation toward well known X-ray binaries. Four bright sources falling in this category have been detected so far: The pulsar GX 1+4 near the center of our galaxy, the stellar wind accreting system 4U 1700-377, and the black hole candidates Cygnus X-1 and GX 339-4. Moreover, SIGMA have observed three transients sources, which turned out to be also hard X-ray sources : The burster KS 1731-260, Tra X-1, and the Musca Nova. The properties of these systems in the SIGMA domain will be reviewed and a spectral distinction between black holes and neutron stars will be sketched.  相似文献   
382.
The Galactic plane was scanned nearly three times by the UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment on HEAO-1 from August 1977 through September 1978. Its Medium Energy Detectors were of the NaI/CsI phoswich type and operated over the 100 keV to 2 MeV range, with a 17° FWHM field of view and a 9% energy resolution at 511 keV. Sky maps for each epoch of observation were constructed in several energy bands. After subtraction of known point sources, a component associated with the galactic plane remains, whose spectrum is consistent with a power law and a positron annihilation spectrum. In the 333 to 583 keV energy band the flux is concentrated within ±35° of the galactic center, and the ratio of flux/radian (anticenter) is high, with a 2σ lower limit of 13. The parameters of the galactic center region's annihilation spectrum are positronium fraction of 0.9±0.1 and 511 keV flux of (2.0±0.7)×10−3 photons/cm2-sec-rad.  相似文献   
383.
An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind, flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density (N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from 2°-3°(at the Earth's orbit, it is equivalent to 3.6-5.4h, or (5.4-8.0)×106km) to the minimum about 0.025°, i.e. the angular size of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift) current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore, the value of β= 8π[N(Te + Tp)]/B2 within the tube exceeds the value of βoutside the tube. In many cases total pressure P = N(Te + Tp) + B2/8πis almost constant within and outside the tubes at any one of the aforementioned scales.  相似文献   
384.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   
385.
386.
高红  徐寄遥   《空间科学学报》2006,26(4):250-256
分析了2000年和2001年期间52°N地区OI5577气辉强度的夜间变化特征和季节变化特征.利用由 OI5577气辉强度反演原子氧浓度峰值的方法反演出原子氧浓度的峰值,分析了峰值的夜间变化特征和季节变化特征.结果表明, OI5577气辉强度的夜间变化特征随季节变化, 2000年春季的夜间强度最大值出现在0000LT 之后,夏季和秋季的出现在0000LT之前,冬季的出现在0000LT,2001年春季和秋季的夜间强度最大值出现在0000LT之前,夏季和冬季的出现在0000LT;OI5577气辉强度在2000年2月份,8月份和10月份出现最大值,在2001年9月份有最大值.就主要特征而言,反演出的原子氧浓度峰值的夜间变化特征和季节变化特征分别与OI5577气辉强度的一致.  相似文献   
387.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   
388.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   
389.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   
390.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号