首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   1篇
航空   23篇
航天技术   4篇
航天   22篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   2篇
  2012年   2篇
  2011年   13篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1998年   3篇
  1996年   1篇
  1989年   2篇
  1988年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
41.
This paper discusses the techniques and problem areas associated with the charging of sealed secondary batteries for spacecraft, and the operating characteristics of the modified voltage-limited charging system. An approach is described for the characterization of battery parameters. The method of selection of a suitable voltage-temperature limit, with regard to battery parameters and system performance requirements, is described. A 4 ampere-hour battery system is analyzed, and its capability is defined parametrically.  相似文献   
42.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   
43.
Testing the attitude control system of the LUNAR ORBITER was accommplished in an air-bearing facility specifically designed for that purpose. This facility was designed to minimize external disturbances in the platform by seismic motion of the floor, mass deflection of the platform, turbine torques from the air bearing, and thermal currents in the room. The facility was used for the System Design Verification tests. These tests included limit-cycle operation, maneuver sequences, wide-angle Sun acquisition and the star-acquisition (Canopus) sequence. Maneuver angle resolution was to be at least 0.1°±0.1° with the capability of measuring three-axis maneuvers for angles to 80°. The design philosophy as evolved from the experience obtained on company-funded research activities as well as the constraints and approach are presented. Solutions to the facility problem areas, which were predicted or encountered during testing, are detailed. Test results, verifying the solutions to the problems encountered, are discussed. Typical operating characteristics of the simulator during different phases of the LUNAR ORBITER test program are presented  相似文献   
44.
45.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   
46.
Late-type secondaries in Algol binaries are rapidly rotating convective stars and thus should be chromospherically active (CA). They are examined with respect to observational manifestations which characterize already known CA stars: Ca II H and K emission cores, photometric variability attributable to starspots, soft x-ray emission, non-thermal radio emission, ultraviolet and infrared excess, and alternating period changes. The conclusion is that they can be regarded as another class of CA stars. In most respects they are literally indistinguishable from other CA stars. Ca II H and K emission cores are observed in the lobe-filling component of six semi-detached binaries: U Cep, RT Lac, RV Lib, AR Mon, S Vel, HR 5110. Alternating period changes are shown to occur only in Algols containing a late-type (convective) star. It is proposed, therefore, that the Matese-Whitmire mechanism explains these changes. Specifically, the interval from one increase (or decrease) to the next can be equated with the star's magnetic cycle. Cycle lengths for 31 stars, derived in this way, range between 7 years and 109 years, with a median of 50 years.  相似文献   
47.
This paper informs how elements of constructive type theory can be used effectively for clarifying textual messages meant for communication with ETI. Within the setting of a suitable environment consisting of declared terms, it is shown how logical contents of texts can be modelled and codified.  相似文献   
48.
Contemporary narratology (narrative theory) offers a useful framework for interpreting interstellar messages that have already been sent to potential extraterrestrial recipients, as well as for designing messages that may be transmitted in the future. In this paper, narratological concepts are used to analyze in depth a single interstellar message sequence, elucidating methods by which various parts of speech (nouns, verbs, adjectives, and adverbs) can be paired with pictures to describe the human body in motion. The concept of focalization is applied to the message sequence's use of isolation and magnification, which highlight the structure and function of the human body and its constituent parts. The challenges of interpreting gaps within narratives, as well as the setting in which events occur, are considered. The importance of closure in providing a fitting end to narratives is examined, and the plausibility of creating images that could be interpreted correctly by extraterrestrial intelligence is assessed. Narratological concepts examined here, as well as additional aspects of narrative, provide important resources for future work in interpreting and designing interstellar messages.  相似文献   
49.
    
Mars is a compelling astrobiological target, and a human mission would provide an opportunity to collect immense amounts of scientific data. Exploration alone, however, cannot justify the increased risk. Instead, three factors drive a human mission: economics, education, and exploration. A human mission has a unique potential to inspire the next generation of young people to enter critically needed science and engineering disciplines. A mission is economically feasible, and the research and development program put in place for a human mission would propel growth in related high-technology industries. The main hurdles are human physiological responses to 1–2 years of radiation and microgravity exposure. However, enabling technologies are sufficiently mature in these areas that they can be developed within a few decade timescale. Hence, the decision of whether or not to undertake a human mission to Mars is a political decision, and thus, educational and economic benefits are the crucial factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号