排序方式: 共有64条查询结果,搜索用时 31 毫秒
31.
We investigate the relation between nontrivial spatial concepts such as holes and string loops from a qualitative spatial reasoning perspective. In particular, we concentrate on a family of puzzles dealing with this kind of objects and explain how a loop formed in a string shows a similar behavior to a hole in an object, at least regarding the qualitative constraints it imposes on the solution of the puzzle. Unlike regular holes, however, we describe how string loops can be dynamically created and destroyed depending on the actions on the string. Furthermore, under a Knowledge Representation point of view, we provide a formalization that allows the different puzzle states to be described in terms of string crossings and loops, together with the actions that can be executed for a state transition and the complex effects they cause on the state representation. This implies the consideration of a formal representation of the side effects of actions that create or destroy string loops and the soundness of this representation with respect to the more general representation of string states in knot theory. 相似文献
32.
H. O. Funsten R. M. Skoug A. A. Guthrie E. A. MacDonald J. R. Baldonado R. W. Harper K. C. Henderson K. H. Kihara J. E. Lake B. A. Larsen A. D. Puckett V. J. Vigil R. H. Friedel M. G. Henderson J. T. Niehof G. D. Reeves M. F. Thomsen J. J. Hanley D. E. George J.-M. Jahn S. Cortinas A. De Los Santos G. Dunn E. Edlund M. Ferris M. Freeman M. Maple C. Nunez T. Taylor W. Toczynski C. Urdiales H. E. Spence J. A. Cravens L. L. Suther J. Chen 《Space Science Reviews》2013,179(1-4):423-484
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance. 相似文献
33.
Francisco C.R. Fernandes José Augusto S.S. Dutra Rafael D. Cunha da Silva Hanumant S. Sawant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This work presents the analysis of five fine structures in the solar radio emission, observed between June 2000 and October 2001 by the Brazilian Solar Spectroscope (BSS), in the decimeter frequency band of 950–2500 MHz. Based on their morphological characteristics identified in the dynamic spectra, the fine structures had been classified as type U-like or type J-like bursts. Such emissions are variants of the type III bursts. They support the hypothesis of generation by plasma emission mechanism, from interaction of electron beams accelerated during solar flares, propagating along closed magnetic structures, within the trapped plasma of the solar corona. The spectral and temporal characteristics of the five fine structures had been obtained from the dynamic spectra and the parameters of the agent and the emitting source have been determined, assuming both fundamental and harmonic emissions. The analysis revealed the flux density of the structures is less than 20–80 s.f.u. For assumption of harmonic emission, the interval of values for the source parameters estimated are: the loop size is (0.3–5.1) × 1010 cm; the electron beam velocity is in the range of 0.16–0.53 c; the temperature of coronal loop top is of the order of (0.25–1.55) × 107 K; and the low limit for the magnetic field is of 7–26 G. These results are in agreement with previous determinations reported in the literature. 相似文献
34.
Susan Jason Alex da Silva Curiel Luis Gomes Andy Phipps Dr. Jeff Ward Dr. Wei Sun Prof. Martin Sweeting 《Acta Astronautica》2001,48(5-12)
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads. 相似文献
35.
Sandro da Silva Fernandes 《Acta Astronautica》2009,64(2-3):95-108
In this paper, some special features on the canonical version of Hori method, when it is applied to generalized canonical systems (systems of differential equations described by a Hamiltonian function linear in the momenta), are presented. Two different procedures, based on a new approach for the integration theory recently presented for the canonical version, are proposed for determining the new Hamiltonian and the generating function for systems whose differential equations for the coordinates describe a periodic system with one fast phase. These procedures are equivalent and they are directly related to the canonical transformations defined by the general solution of the integrable kernel of the Hamiltonian. They provide the same near-identity transformation for the coordinates obtained through the non-canonical version of Hori method. It is also shown that these procedures are connected to the classic averaging principle through a canonical transformation. As examples, asymptotic solutions of a non-linear oscillations problem and of the elliptic perturbed problem are discussed. 相似文献
36.
D.B. Contreira F.S. Rodrigues K. Makita C.G.M. Brum W. Gonzalez N.B. Trivedi M.R. da Silva N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2455-2459
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented. 相似文献
37.
The origin of the regular satellites ties directly to planetary formation in that the satellites form in gas and dust disks around the giant planets and may be viewed as mini-solar systems, involving a number of closely related underlying physical processes. The regular satellites of Jupiter and Saturn share a number of remarkable similarities that taken together make a compelling case for a deep-seated order and structure governing their origin. Furthermore, the similarities in the mass ratio of the largest satellites to their primaries, the specific angular momenta, and the bulk compositions of the two satellite systems are significant and in need of explanation. Yet, the differences are also striking. We advance a common framework for the origin of the regular satellites of Jupiter and Saturn and discuss the accretion of satellites in gaseous, circumplanetary disks. Following giant planet formation, planetesimals in the planet’s feeding zone undergo a brief period of intense collisional grinding. Mass delivery to the circumplanetary disk via ablation of planetesimal fragments has implications for a host of satellite observations, tying the history of planetesimals to that of satellitesimals and ultimately that of the satellites themselves. By contrast, irregular satellites are objects captured during the final stages of planetary formation or the early evolution of the Solar System; their distinct origin is reflected in their physical properties, which has implications for the subsequent evolution of the satellites systems. 相似文献
38.
39.
Meteoroids as One of the Sources for Exosphere Formation on Airless Bodies in the Inner Solar System
Janches Diego Berezhnoy Alexey A. Christou Apostolos A. Cremonese Gabriele Hirai Takayuki Horányi Mihály Jasinski Jamie M. Sarantos Menelaos 《Space Science Reviews》2021,217(4):1-4
Space Science Reviews - 相似文献
40.