首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
航空   6篇
航天技术   22篇
航天   3篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  1998年   4篇
  1996年   1篇
  1983年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
21.
Rectangular-wave modulated pulse lengths are expressed as a function of the modulation index. The theoretical expressions are experimentally verified. An experimental measurement of signal-to-noise ratio for rectangular-wave modulation confirms the theoretical analysis. Jelonek's signal-to-noise ratio formula for pulse-length modulation is also found applicable to rectangular-wave modulation. It is concluded that rectangular-wave modulation is closed-loop pulse-length modulation.  相似文献   
22.
Electrostatic space radiation shielding   总被引:2,自引:0,他引:2  
For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.  相似文献   
23.
We have used several transport codes to calculate dose and dose equivalent values as well as the particle spectra behind a slab or inside a spherical shell shielding in typical space radiation environments. Two deterministic codes, HZETRN and UPROP, and two Monte Carlo codes, FLUKA and Geant4, are included. A soft solar particle event, a hard solar particle event, and a solar minimum galactic cosmic rays environment are considered; and the shielding material is either aluminum or polyethylene. We find that the dose values and particle spectra from HZETRN are in general rather consistent with Geant4 except for neutrons. The dose equivalent values from HZETRN and Geant4 are not far from each other, but the HZETRN values behind shielding are often lower than the Geant4 values. Results from FLUKA and Geant4 are mostly consistent for considered cases. However, results from the legacy code UPROP are often quite different from the other transport codes, partly due to its non-consideration of neutrons. Comparisons for the spherical shell geometry exhibit the same qualitative features as for the slab geometry. In addition, results from both deterministic and Monte Carlo transport codes show that the dose equivalent inside the spherical shell decreases from the center to the inner surface and this decrease is large for solar particle events; consistent with an earlier study based on deterministic radiation transport results. This study demonstrates both the consistency and inconsistency among these transport models in their typical space radiation predictions; further studies will be required to pinpoint the exact physics modules in these models that cause the differences and thus may be improved.  相似文献   
24.
This chapter reviews how our knowledge of CMEs and CME-associated phenomena has been improved, since the launch of the SOHO mission, thanks to multi-wavelength analysis. The combination of data obtained from space-based experiments and ground based instruments allows us to follow the space-time development of an event from the bottom of the corona to large distances in the interplanetary medium. Since CMEs originate in the low solar corona, understanding the physical processes that generate them is strongly dependant on coordinated multi-wavelength observations. CMEs display a large diversity in morphology and kinematic properties, but there is presently no statistical evidence that those properties may serve to group them into different classes. When a CME takes place, the coronal magnetic field undergoes restructuring. Much of the current research is focused on understanding how the corona sustains the stresses that allow the magnetic energy to build up and how, later on, this magnetic energy is released during eruptive flares and CMEs. Multi-wavelength observations have confirmed that reconnection plays a key role during the development of CMEs. Frequently, CMEs display a rather simple shape, exhibiting a well known three-part structure (bright leading edge, dark cavity and bright knot). These types of events have led to the proposal of the ‘`standard model’' of the development of a CME, a model which predicts the formation of current sheets. A few recent coronal observations provide some evidence for such sheets. Other more complex events correspond to multiple eruptions taking place on a time scale much shorter than the cadence of coronagraph instruments. They are often associated with large-scale dimming and coronal waves. The exact nature of these waves and the physical link between these different manifestations are not yet elucidated. We also discuss what kind of shocks are produced during a flare or a CME. Several questions remain unanswered. What is the nature of the shocks in the corona (blast-wave or piston-driven?) How they are related to Moreton waves seen in Hα? How they are related to interplanetary shocks? The last section discusses the origin of energetic electrons detected in the corona and in the interplanetary medium. “Complex type III-like events,”which are detected at hectometric wavelengths, high in the corona, and are associated with CMEs, appear to originate from electrons that have been accelerated lower in the corona and not at the bow shock of CMEs. Similarly, impulsive energetic electrons observed in the interplanetary medium are not the exclusive result of electron acceleration at the bow shocks of CMEs; rather they have a coronal origin.  相似文献   
25.
26.
A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NUCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.  相似文献   
27.
In planetary atmospheres the nature of the aerosols varies, as does the relative importance of different sources of ion production. The nature of the aerosol and ion production is briefly reviewed here for the atmospheres of Venus, Mars, Jupiter and Titan using the concepts established for the terrestrial atmosphere. Interactions between the ions formed and aerosols present cause (1) charge exchange, which can lead to substantial aerosol charge and (2) ion removal. Consequences of (1) are that (a) charged aerosol are more effectively removed by conducting liquid droplets than uncharged aerosol and (b) particle–particle coagulation rates are modified, influencing particle residence times in the relevant atmosphere. Consequences of (2) are that ions are removed in regions with abundant aerosol, which may preclude charge flow in an atmosphere, such as that associated with an atmospheric electrical circuit. In general, charge should be included in microphysical modeling of the properties of planetary aerosols.  相似文献   
28.
A new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of asymptotic/Neumann expansions with non-perturbative corrections. The code contains energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts, and off-axis dispersion with multiple scattering under preparation. The present benchmark is for a broad directed beam for 1 A GeV iron ion beams with 2 A MeV width and four targets of polyethylene, polymethyl metachrylate, aluminum, and lead of varying thickness from 5 to 30 g/cm2. The benchmark quantities will be dose, track averaged LET, dose averaged LET, fraction of iron ion remaining, and fragment energy spectra after 23 g/cm2 of polymethyl metachrylate.  相似文献   
29.
The protection of astronauts and instrumentation from galactic cosmic rays and solar particle events is one of the primary constraints associated with mission planning in low earth orbit or deep space. To help satisfy this constraint, several computational tools have been developed to analyze the effectiveness of various shielding materials and structures exposed to space radiation. These tools are now being carefully scrutinized through a systematic effort of verification, validation, and uncertainty quantification. In this benchmark study, the deterministic transport code HZETRN is compared to the Monte Carlo transport codes HETC-HEDS and FLUKA for a 30 g/cm2 water target protected by a 20 g/cm2 aluminum shield exposed to a parameterization of the February 1956 solar particle event. Neutron and proton fluences as well as dose and dose equivalent are compared at various depths in the water target. The regions of agreement and disagreement between the three codes are quantified and discussed, and recommendations for future work are given.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号