首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   1篇
  国内免费   10篇
航空   186篇
航天技术   84篇
综合类   1篇
航天   47篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   15篇
  2013年   8篇
  2012年   13篇
  2011年   31篇
  2010年   9篇
  2009年   16篇
  2008年   22篇
  2007年   12篇
  2006年   8篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   2篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有318条查询结果,搜索用时 187 毫秒
191.
A new input estimation technique for target tracking problem is proposed. Conventional input estimation techniques assume that the target maneuver level is constant within the detection window, which has been the major drawback of the techniques. The proposed technique is developed to overcome this drawback by modeling the target maneuver as a linear combination of some basic time functions. The resulting algorithm has a generalized formulation including earlier works on input estimation. A detection performance of the proposed algorithm is analyzed by investigating the detection sensitivity according to the selection of maneuver models and other design parameters such as the detection window size, measurement noise level, and sampling step size. A computer simulation study shows that the estimation performance of the proposed algorithm is comparable to Bogler's input estimation method while the computation time is greatly reduced  相似文献   
192.
Comparison of SDINS in-flight alignment using equivalent errormodels   总被引:1,自引:0,他引:1  
The psi-angle model and the equivalent tilt (ET) model have been widely used for in-flight alignment (IFA) to align and to calibrate a strapdown inertial navigation system (SDINS) on a moving base. However, these models are not effective for a system with large attitude errors because the neglected error terms in the models degrade the performance of a designed filter. In this paper, with an odometer as an external aid, a velocity-aided SDINS is designed for IFA. Equivalent error models applicable to IFA with large attitude errors are derived in terms of rotation vector error and additive and multiplicative quaternion errors. It is found that error models in terms of additive quaternion error (AQE) become linear. Thus the proposed error models reduce unmodeled error terms for a linear filter. From a number of van tests, it is shown that the proposed error models effectively improve the performance of IFA  相似文献   
193.
Stops along taxi trajectories, such as picking up and dropping off passengers, are spatially clustered and related to certain attributes of places where stops are made. To detect the hidden knowledge regarding these places, this article examines the semantics of massive taxi stops in a large city. Each taxi trajectory is modeled as a series of sequential semantic stops labeled by street names. All the trajectories can be examined as a document corpus, from which the hidden themes of the stops are identified through Latent Dirichlet Allocation model. Conventional GIS tools are coupled with topic modeling toolkit to visualize and analyze potential information of stop topics for understanding intra-city dynamics. The effectiveness of this approach is illustrated by a case study using a large dataset of taxi trajectories including approximately 4,000 taxis in Wuhan, China.  相似文献   
194.
A numerical investigation on jet interaction in supersonic laminar flow with a compres- sion ramp is performed utilizing the AUSMDV scheme and a parallel solver. Several parameters dominating the interference flowfield are studied after defining the relative increment of normal force and the jet amplification factor as the evaluation criterion of jet control performance. The computational results show that most features of the interaction flowfield between the transverse jet and the ramp are similar to those between a jet and a flat plate, except that the flow structures are more complicated and the low-pressure region behind the jet is less extensive. The relative force increment and the jet amplification factor both increase with the distance between the jet and the ramp shortening till quintuple jet diameters. Inconspicuous difference is observed between the jet-before-ramp and jet-on-ramp cases. The variation of the injection angle changes the extent of the separation region, the plateau pressure, and the peak pressure near the jet. In the present computational conditions, 120 is indicated relatively optimal among all the injection angles studied. For cold gas simulations, although little influence of the jet temperature on the pressure distribution near the jet is observed under the computation model and the flow parameters studied, reducing jet temperature somehow benefits the improvement of the normal force and the jet efficiency. When the pressure ratio of jet to freestream is fixed, the relative force increment varies little when increasing the freestream Mach number, while the jet amplification factor increases.  相似文献   
195.
196.
In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation - Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1 arcsec.  相似文献   
197.
The aim of this study was to identify landslide-related factors using only remotely sensed data and to present landslide susceptibility maps using a geographic information system, data-mining models, an artificial neural network (ANN), and an adaptive neuro-fuzzy interface system (ANFIS). Landslide-related factors were identified in Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. The slope, aspect, and curvature of topographic features were calculated from a digital elevation model that was made using the ASTER imagery. Lineaments, land-cover, and normalized difference vegetative index layers were also extracted from the imagery. Landslide-susceptible areas were analyzed and mapped based on occurrence factors using the ANN and ANFIS. The generalized bell-shaped built-in membership function of the ANFIS was applied to landslide susceptibility mapping. Analytical results were validated using landslide test location data. In the validation results, the ANN model showed 80.42% prediction accuracy and the ANFIS model showed 86.55% prediction accuracy. These results suggest that the ANFIS model has a better performance than does the ANN in predicting landslide susceptibility.  相似文献   
198.
Measurements taken in Low Earth Orbit (LEO) onboard the International Space Station (ISS) and transit vehicles have been extensively used to validate radiation transport models. Primarily, such comparisons were done by integrating measured data over mission or trajectory segments so that individual comparisons to model results could be made. This approach has yielded considerable information but is limited in its ability to rigorously quantify and differentiate specific model errors or uncertainties. Further, as exploration moves beyond LEO and measured data become sparse, the uncertainty estimates derived from these validation cases will no longer be applicable. Recent improvements in the underlying numerical methods used in HZETRN have resulted in significant decreases in code run time. Therefore, the large number of comparisons required to express error as a function of a physical quantity, like cutoff rigidity, are now possible. Validation can be looked at in detail over any portion of a flight trajectory (e.g. minute by minute) such that a statistically significant number of comparisons can be made. This more rigorous approach to code validation will allow the errors caused by uncertainties in the geometry models, environmental models, and nuclear physics models to be differentiated and quantified. It will also give much better guidance for future model development. More importantly, it will allow a quantitative means of extrapolating uncertainties in LEO to free space. In this work, measured data taken onboard the ISS during solar maximum are compared to results obtained with the particle transport code HZETRN. Comparisons are made at a large number (∼77,000) of discrete time intervals, allowing error estimates to be given as a function of cutoff rigidity. It is shown that HZETRN systematically underestimates exposure quantities at high cutoff rigidity. The errors are likely associated with increased angular variation in the geomagnetic field near the equator, the lack of pion production in HZETRN, and errors in high energy nuclear physics models, and will be the focus of future work.  相似文献   
199.
This paper presents a study of the dates and times of astrophysical phenomena seen in the night time hours in Korea between 1625 and 1787. This is a period when two different calendars were used and it is important to know which calendar was used to record events such as lunar eclipses. It is known that the Joseon court adopted Shixianli (a Chinese calendar of Adam Schall) in 1654, the fifth reign of King Hyojong. However, the year when the court introduced the calendar into the system of night hours has not yet been determined. To know the enforcement year is very important for studies on astronomical events that are presented in Korean historical documents. From Seungjeongwon Ilgi (Daily Records of the Royal Secretariat), we compile a total of 90 lunar eclipse records referring to the observation time of the eclipses and calculate the times of occurrence of the eclipses with respect to the calendrical methods: Chiljeongsan Naepyeon (a Korean calendar) and Shixianli. As a result, we find that the system of night hours by the former calendrical method was used in the Joseon dynasty until as late as 1710. We also verify that the times of sunrise and sunset were considered as the moments when the center of the Sun reached the horizon according to Chiljeongsan Naepyeon at least. Therefore, we think that this study will contribute to the studies on astronomical phenomena of the Joseon dynasty, particularly on the estimate of the observation time.  相似文献   
200.
In this paper, a scheduling optimization algorithm is developed and verified for autonomous satellite mission operations. As satellite control and operational techniques continue to develop, satellite missions become more complicated and the overall quantity of tasks within the missions also increases. These changes require more specific consideration and a huge amount of computational resources, for scheduling the satellite missions. In addition, there is a certain level of repetition in satellite mission scheduling activities, and hence it is highly recommended that the operation manager carefully considers and builds some appropriate strategy for performing the operations autonomously. A good strategy to adopt is to develop scheduling optimization algorithms, because it is difficult for humans to consider the many mission parameters and constraints simultaneously. In this paper, a new genetic algorithm is applied to simulations of an actual satellite mission scheduling problem, and an appropriate GUI design is considered for an autonomous satellite mission operation. It is expected that the scheduling optimization algorithm and the GUI can improve the overall efficiency in practical satellite mission operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号