全文获取类型
收费全文 | 345篇 |
免费 | 1篇 |
国内免费 | 5篇 |
专业分类
航空 | 150篇 |
航天技术 | 64篇 |
综合类 | 1篇 |
航天 | 136篇 |
出版年
2021年 | 6篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 11篇 |
2017年 | 6篇 |
2015年 | 2篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 23篇 |
2011年 | 36篇 |
2010年 | 17篇 |
2009年 | 23篇 |
2008年 | 18篇 |
2007年 | 21篇 |
2006年 | 16篇 |
2005年 | 25篇 |
2004年 | 3篇 |
2003年 | 14篇 |
2002年 | 12篇 |
2001年 | 4篇 |
2000年 | 5篇 |
1998年 | 6篇 |
1997年 | 7篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 6篇 |
1984年 | 4篇 |
1983年 | 7篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 4篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1967年 | 6篇 |
1966年 | 2篇 |
排序方式: 共有351条查询结果,搜索用时 0 毫秒
191.
Spatial short-term memory for single target positions is subject to distortions which depend on the spatial layout of visual landmarks. Here, participants had to reproduce the positions of briefly presented targets in the context of three-landmark configurations presented in various orientations. Symmetry properties of distortional patterns were determined by the intrinsic reference system of the landmark configuration as well as by the environment-or body-centered vertical axis. Symmetry was best about the cardinal axes of the landmark system irrespective of their orientation, but symmetry of non-cardinal axes was enhanced when these axes were aligned with the extrinsic vertical. Results are inconsistent with most current models of spatial memory distortions but in line with models explaining distortions in terms of attentional processes in topographical neuronal networks. 相似文献
192.
HUANG Xu-dong CHEN Hai-xin FU Song David Wisler Aspi Wadi G. Scott McNulty 《航空动力学报》2007,22(9):1455-1460
IntroductionVortex is often the essential element re-sponsible for triggering stall and surge in com-pressors.So the identification and the analysisof the vortices in compressor are usually quitehelpful for the understanding of the compressorbehavior.Howe… 相似文献
193.
194.
195.
Zhen Li Marek Ziebart Santosh Bhattarai David Harrison 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(3):1347-1359
Accurate Solar Radiation Pressure (SRP) modelling is critical for correctly describing the dynamics of satellites. A shadow function is a unitless quantity varying between 0 and 1 to scale the solar radiation flux at a satellite’s location during eclipses. Errors in modelling shadow function lead to inaccuracy in SRP that degrades the orbit quality. Shadow function modelling requires solutions to a geometrical problem (Earth’s oblateness) and a physical problem (atmospheric effects). This study presents a new shadow function model (PPM_atm) which uses a perspective projection based approach to solve the geometrical problem rigorously and a linear function to describe the reduction of solar radiation flux due to atmospheric effects. GRACE (Gravity Recovery And Climate Experiment) satellites carry accelerometers that record variations of non-conservative forces, which reveal the variations of shadow function during eclipses. In this study, the PPM_atm is validated using accelerometer observations of the GRACE-A satellite. Test results show that the PPM_atm is closer to the variations in accelerometer observations than the widely used SECM (Spherical Earth Conical Model). Taking the accelerometer observations derived shadow function as the “truth”, the relative error in PPM_atm is ?0.79% while the SECM 11.07%. The influence of the PPM_atm is also shown in orbit prediction for Galileo satellites. Compared with the SECM, the PPM_atm can reduce the radial orbit error RMS by 5.6?cm over a 7-day prediction. The impacts of the errors in shadow function modelling on the orbit remain to be systematic and should be mitigated in long-term orbit prediction. 相似文献
196.
David L 《Aerospace America》1996,34(5):26-30
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet. 相似文献
197.
The plasma produced by a Kaufman (UK-25) ion thruster possesses four distinct regions. The interaction of two of these regions, the coupling and discharge plasmas, is important for thruster design and efficiency, since it controls the production of the primary electrons responsible for most of the ionisation in the thruster. This paper details the measurement and analysis techniques used to obtain two-dimensional experimental plasma parameter maps across a plasma double layer in the baffle aperture region of this type of ion thruster. This plasma-interaction region was mapped experimentally using Langmuir probes.The Langmuir probe data were collected and analysed to produce maps of plasma potential, Maxwellian and primary electron energy and number density. Detailed static magnetic field measurements using Hall-effect probes were also obtained. A number of derived plasma parameter maps were then made possible, such as electron pressure. The application of the analysis techniques used here allowed ion thruster plasma property maps to be constructed of a spatial extent and resolution previously unseen. Two-dimensional maps of the spatial location of primary electrons are presented, as effected by applied magnetic field changes, along with the detection of regions showing depletion of primary electron energies. 相似文献
198.
199.
Valerie C. Thomas Joseph M. Makowski G. Mark Brown John F. McCarthy Dominick Bruno J. Christopher Cardoso W. Michael Chiville Thomas F. Meyer Kenneth E. Nelson Betina E. Pavri David A. Termohlen Michael D. Violet Jeffrey B. Williams 《Space Science Reviews》2011,163(1-4):175-249
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres. 相似文献
200.
David N. Burrows J. E. Hill J. A. Nousek J. A. Kennea A. Wells J. P. Osborne A. F. Abbey A. Beardmore K. Mukerjee A. D. T. Short G. Chincarini S. Campana O. Citterio A. Moretti C. Pagani G. Tagliaferri P. Giommi M. Capalbi F. Tamburelli L. Angelini G. Cusumano H. W. Bräuninger W. Burkert G. D. Hartner 《Space Science Reviews》2005,120(3-4):165-195
he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows.
The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset.
The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity
is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition.
It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure
mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades.
The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow
each burst for days or weeks.
Dedicated to David J. Watson, in memory of his valuable contributions to this instrument. 相似文献