首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4116篇
  免费   4篇
  国内免费   13篇
航空   1844篇
航天技术   1458篇
综合类   11篇
航天   820篇
  2021年   34篇
  2019年   24篇
  2018年   66篇
  2017年   56篇
  2016年   48篇
  2014年   72篇
  2013年   112篇
  2012年   109篇
  2011年   182篇
  2010年   122篇
  2009年   171篇
  2008年   212篇
  2007年   128篇
  2006年   93篇
  2005年   134篇
  2004年   130篇
  2003年   134篇
  2002年   92篇
  2001年   120篇
  2000年   64篇
  1999年   87篇
  1998年   113篇
  1997年   83篇
  1996年   73篇
  1995年   111篇
  1994年   127篇
  1993年   66篇
  1992年   80篇
  1991年   33篇
  1990年   45篇
  1989年   69篇
  1988年   32篇
  1987年   27篇
  1986年   41篇
  1985年   131篇
  1984年   115篇
  1983年   98篇
  1982年   77篇
  1981年   157篇
  1980年   34篇
  1979年   34篇
  1978年   38篇
  1977年   35篇
  1976年   29篇
  1975年   35篇
  1974年   32篇
  1973年   32篇
  1972年   42篇
  1971年   23篇
  1970年   23篇
排序方式: 共有4133条查询结果,搜索用时 546 毫秒
991.
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period.  相似文献   
992.
During the last decade a significant progress has been reached in the investigation of the gravity field of the Earth. Besides static, also time variable geopotential models have been recently created. In this paper we investigate the impact of the recent time variable geopotential models on altimetry satellite orbits and such altimetry products based on these orbits, as global and regional mean sea level trends. We show that the modeling of time variable gravity improves the orbit solutions, at least for the GRACE period where time variable gravity is sufficiently accurately observed by this mission. Our analysis includes six geopotential models jointly developed by GFZ German Research Centre for Geosciences and Space Geodesy Research Group (CNES/GRGS) Toulouse: the stationary model EIGEN-GL04S, a stationary version of EIGEN-6S (EIGEN-6S_stat), a corrected version of EIGEN-6S and three enhanced versions of EIGEN-6S called EIGEN-6S2, EIGEN-6S2A and EIGEN-6S2B. By “stationary” we mean “containing periodic parameters such as annual and semi-annual variations, but no secular (drift) terms”. We computed precise orbits for the radar altimetry satellites ERS-1, ERS-2, TOPEX/Poseidon, and Envisat over 20 years between 1991 and 2011. The orbit, single-mission and multi-mission altimetry crossover analyses show that the time variable models EIGEN-6S_corrected, EIGEN-6S2 and its two precursors EIGEN-6S2A/B perform notably better than the stationary models for the GRACE period from 2003 onwards. Thus, using EIGEN-6S2 and EIGEN-6S2A/B we have got 3.6% smaller root mean square fits of satellite laser ranging observations for Envisat, as when using EIGEN-GL04S. However, for the pre-GRACE period 1991–2003, the stationary geopotential models EIGEN-GL04S and EIGEN-6S_stat as well as EIGEN-6S2 having no drift terms for degree 3–50 at this time interval perform superior compared to EIGEN-6S_correct and EIGEN-6S2A/B which contain drifts for this period. We found, that the time variable geopotential models have a low (0.1–0.2 mm/yr) impact on our results for the global mean sea level trend. However, we found strong East/West differences up to 3 mm/yr in the regional mean sea level trends when using orbits of all four satellites based on time variable and stationary geopotential models. We show that these differences are related to the relative drifts of the centers-of-origin between the orbit solutions based on the time variable and stationary geopotential models. From the results of our detailed study, we conclude that the final version of the time variable gravity field model EIGEN-6S2 performs best for the four satellites tested. This model provides the most reliable and mission-consistent sea level estimates for the whole time period from 1992 to 2010. This model is of maximum spherical harmonic degree and order 260 and contains time series for drifts as well as annual and semiannual variations of the spherical harmonic coefficients for degree 2–50.  相似文献   
993.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   
994.
Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.  相似文献   
995.
Due to high relative velocities, collisions of spacecraft in orbit with Space Debris (SD) or Micrometeoroids (MM) can lead to payload degradation, anomalies as well as failures in spacecraft operation, or even loss of mission. Flux models and impact risk assessment tools, such as MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) or ORDEM (Orbital Debris Engineering Model), and ESABASE2 or BUMPER II are used to analyse mission risk associated with these hazards. Validation of flux models is based on measured data. Currently, as most of the SD and MM objects are too small (millimeter down to micron sized) for ground-based observations (e.g. radar, optical), the only available data for model validation is based upon retrieved hardware investigations e.g. Long Duration Exposure Facility (LDEF), Hubble Space Telescope (HST), European Retrievable Carrier (EURECA). Since existing data sets are insufficient, further in-situ experimental investigation of the SD and MM populations are required. This paper provides an overview and assessment of existing and planned SD and MM impact detectors. The detection area of the described detectors is too small to adequately provide the missing data sets. Therefore an innovative detection concept is proposed that utilises existing spacecraft components for detection purposes. In general, solar panels of a spacecraft provide a large area that can be utilised for in-situ impact detection. By using this method on several spacecraft in different orbits the detection area can be increased significantly and allow the detection of SD and MM objects with diameters as low as 100 μm. The design of the detector is based on damage equations from HST and EURECA solar panels. An extensive investigation of those panels was performed by ESA and is summarized within this paper. Furthermore, an estimate of the expected sensitivity of the patented detector concept as well as examples for its implementation into large and small spacecraft are presented.  相似文献   
996.
This article focuses on the genetic identification of observed small cosmic bodies with alleged parental bodies; namely, comets, asteroids and meteoroid swarms. There is a problem of the upper D-value limit as a measure of proximity between the orbits of the bodies in the five-dimensional phase space (Southworth and Hawkins, 1963). In the study of genetic relationships of the comet and meteor complexes, the D value is usually taken as equal to 0.2 for all meteor showers. However, the upper D limit should be investigated for each meteoroid complex. For example, such investigation was performed for the Taurid meteor complex (Porub?an et al., 2006). In this paper, the upper D-criterion limit value was investigated for the Perseid meteor shower. The 1862 III Swift–Tuttle comet is its parental comet.  相似文献   
997.
We estimate the statistic characteristics and extreme deviations of the state vector components for the Ilyushin Il 96–300 systems at automatic landing.  相似文献   
998.
999.
Cosmic Research - We investigated variations on scales of 104–105 km and local spatial inhomogeneities in the density of protons Np, doubly ionized helium ions (α-particles) Nα, and...  相似文献   
1000.
We report the existence of rapid variations in (effective) geomagnetic cutoff rigidity (Rc) between the equatorial and Antarctic zones adjacent to the Andes Mountains, revealed by the variation rate of geomagnetic cutoff rigidity (VRc) in the period 1975–2010. Our analysis is based on empirical records and theoretical models of the variations in cosmic rays and on the structure of geomagnetic fields. These have given us a different view of variations in Rc in time and space along the 70°W meridian, where secular variations in the geomagnetic field are strongly influenced by the proximity of the South Atlantic Magnetic Anomaly (SAMA), one of the most important characteristics of the terrestrial magnetic field that affects our planet, close from the equator to the 50°S parallel and from South America to South Africa. The VRc presents rapid changes in mid-latitudes where SAMA exerts its influence despite the existence of smooth changes in the geomagnetic field. This shows that these changes occur mainly in the spatial configuration, rather than in the temporal evolution of Rc. The analysis was performed using measurements from the Chilean Network of Cosmic Rays and Geomagnetism Observatories, equipped with BF-3 and latest generation He-3 neutron monitors, Fluxgate magnetometers, geomagnetic reference field (IGRF) and Tsyganenko 2001 model (just for completeness).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号