首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4121篇
  免费   4篇
  国内免费   13篇
航空   1844篇
航天技术   1463篇
综合类   11篇
航天   820篇
  2021年   34篇
  2019年   24篇
  2018年   66篇
  2017年   56篇
  2016年   48篇
  2014年   72篇
  2013年   113篇
  2012年   109篇
  2011年   182篇
  2010年   122篇
  2009年   171篇
  2008年   212篇
  2007年   128篇
  2006年   93篇
  2005年   134篇
  2004年   130篇
  2003年   134篇
  2002年   92篇
  2001年   120篇
  2000年   64篇
  1999年   87篇
  1998年   113篇
  1997年   83篇
  1996年   73篇
  1995年   111篇
  1994年   127篇
  1993年   66篇
  1992年   80篇
  1991年   33篇
  1990年   45篇
  1989年   69篇
  1988年   33篇
  1987年   28篇
  1986年   41篇
  1985年   131篇
  1984年   116篇
  1983年   99篇
  1982年   77篇
  1981年   157篇
  1980年   34篇
  1979年   34篇
  1978年   38篇
  1977年   35篇
  1976年   29篇
  1975年   35篇
  1974年   32篇
  1973年   32篇
  1972年   42篇
  1971年   23篇
  1970年   23篇
排序方式: 共有4138条查询结果,搜索用时 12 毫秒
51.
The results of research in a process of a probe rocket berthing to an asteroid are presented. Control laws were obtained as solutions of three problems, namely berthing considering transient processes in a rocket engine, fastest berthing with regard to fuel consumption and berthing in a scheduled time considering fuel consumption. A program trajectory obtained at solving of the first problem is suitable for mathematical modeling of berthing with the feedback control law and stabilization of angular motion. The solutions of the problems are reduced to simple formulas for controlling parameters calculation in the corresponding structures of control laws. The results can be applied in designing promising space vehicles intended for berthing to other space objects.  相似文献   
52.
Spores of Bacillus subtilis were exposed to selected factors of space (vacuum, solar UV radiation, heavy ions of cosmic radiation), and their response was studied after recovery. These investigations were supplemented by ground-based studies under simulated space conditions. The vacuum of space did not inactivate the spores. However, vacuum-induced structural changes in the DNA, and probably in the proteins, caused a supersensitivity to solar UV radiation. This phenomenon is caused by the production of specific photoproducts in DNA and protein, which cannot be removed by normal cellular repair processes. In vegetative bacterial cells, exposed to vacuum, cell dehydration led to damage of the cell membrane, which could be partly repaired during subsequent incubation. The high local effectiveness of the cosmic heavy ions further decreases the chance that spores can survive for any length of time in space. Nonetheless, a spore travelling through space and protected from ultraviolet radiation could possibly survive an interplanetary journey. Such a situation favors panspermia as a possible explanation for the origin of life.  相似文献   
53.
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum.  相似文献   
54.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   
55.
56.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   
57.
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite.  相似文献   
58.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
59.
60.
Mercury has a small but intriguing magnetosphere. In this brief review, we discuss some similarities and differences between Mercury’s and Earth’s magnetospheres. In particular, we discuss how electric and magnetic field measurements can be used as a diagnostic tool to improve our understanding of the dynamics of Mercury’s magnetosphere. These points are of interest to the upcoming ESA-JAXA BepiColombo mission to Mercury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号