首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   3篇
  国内免费   8篇
航空   183篇
航天技术   80篇
综合类   1篇
航天   140篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   11篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   37篇
  2011年   46篇
  2010年   17篇
  2009年   23篇
  2008年   18篇
  2007年   21篇
  2006年   17篇
  2005年   27篇
  2004年   5篇
  2003年   16篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   10篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
排序方式: 共有404条查询结果,搜索用时 421 毫秒
71.
A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity’s 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin’s angular range of 5° to 50° 2θ with <0.35° 2θ resolution is sufficient to identify and quantify virtually all minerals. CheMin’s XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co?Kα from Co?Kβ and Fe?Kα photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar? or Kapton? windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations.  相似文献   
72.
在机体结构维修中,飞机舱门经常因腐蚀和碰撞而使维修项目较多。但当前许多创新材料和作动系统正在让舱门维修项目减少,维修变得简易化。如新型热塑性材料、先进的机电作动系统和传感器技术、环保的表面处理技术等。一般来说,客舱和货舱门及其部件极易因腐蚀和碰撞造成损伤,如客机和货机前后舱门的下部在装卸行李和货物过程中容易被地面服务车辆和单元装载设备损坏,因此维修项目较多。令人欣慰的是,原始制造商和供应商正在从材料和部件方面引入创新技术,提高产品的损伤容限,降低维修强度。  相似文献   
73.
A restricted 2?+?2 body problem is proposed as a possible mechanism to explain the capture of small bodies by a planet. In particular, we consider two primaries revolving in a circular mutual orbit and two small bodies of equal mass, neither of which affects the motion of the primaries. If the small bodies are temporarily captured in the Hill sphere of the smaller primary, they may get close enough to each other to exchange energy in such a way that one of them becomes permanently captured. Numerical simulations show that capture is possible for both prograde and retrograde orbits.  相似文献   
74.
正使用传感器监测飞机结构的健康状况从原理上分析是一种非常有效的途径,而且如桑迪亚国家实验室和SMS公司等机构已经对一些真空比较监测传感器开展了广泛的飞行试验,因此,业内人士认为这种监测技术极具应用潜力,如可将非计划维修转化为计划性维修,或者代替耗时耗力的无损检测等。但无论开展哪种应用,均需获得局方的批准,而目前的形势是局方仍较为谨慎。  相似文献   
75.
Biological damages such as mutations, chromosomal aberrations etc. are a consequence of biochemical changes mostly in the DNA. With ionizing radiation, these chemical changes are due to primary ionization events and secondary ionization effects caused by the primarily produced electrons. Differences in the biological response of densely ionizing radiation, like heavy charged particles, in comparison to sparsely ionizing radiation, such as X- or gamma-rays, are mainly due to the differences in the production of the so called delta-electrons. Therefore, the emission process of electrons i.e. the cross section for the primary ionization event as well as the energy and angular distribution of the emitted electrons should be understood in detail. The delta-electron emission processes occuring in fast heavy ion atom collisions are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed.  相似文献   
76.
77.
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.  相似文献   
78.
ESA??s hard X-ray and soft gamma-ray observatory INTEGRAL is covering the 3 keV to 10 MeV energy band, with excellent sensitivity during long and uninterrupted observations of a large field of view (??100 square degrees), with ms time resolution and keV energy resolution. It links the energy band of pointed soft X-ray missions such as XMM-Newton with that of high-energy gamma-ray space missions such as Fermi and ground based TeV observatories. Key results obtained so far include the first sky map in the light of the 511 keV annihilation emission, the discovery of a new class of high mass X-ray binaries and detection of polarization in cosmic high energy radiation. For the foreseeable future, INTEGRAL will remain the only observatory allowing the study of nucleosynthesis in our Galaxy, including the long overdue next nearby supernova, through high-resolution gamma-ray line spectroscopy. Science results to date and expected for the coming mission years span a wide range of high-energy astrophysics, including studies of the distribution of positrons in the Galaxy; reflection of gamma-rays off clouds in the interstellar medium near the Galactic Centre; studies of black holes and neutron stars particularly in high- mass systems; gamma-ray polarization measurements for X-ray binaries and gamma-ray bursts, and sensitive detection capabilities for obscured active galaxies with more than 1000 expected to be found until 2014. This paper summarizes scientific highlights obtained since INTEGRAL??s launch in 2002, and outlines prospects for the INTEGRAL mission.  相似文献   
79.
Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the CO2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.  相似文献   
80.
It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号