首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   11篇
航天技术   3篇
航天   8篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1980年   2篇
排序方式: 共有22条查询结果,搜索用时 281 毫秒
11.
The current, system-specific countermeasures to space deconditioning have limited success with the musculoskeletal system in long duration missions. Artificial gravity (AG) that is produced by short radius centrifugation has been hypothesized as an effective countermeasure because it reintroduces an acceleration field in space; however, AG alone might not be enough stimuli to preserve the musculoskeletal system. A novel combination of AG coupled with one-legged squats on a vibrating platform may preserve muscle and bone in the lower limbs to a greater extent than the current exercise paradigm. The benefits of the proposed countermeasure have been analyzed through the development of a simulation platform. Ground reaction force data and motion data were collected using a motion capture system while performing one-legged and two-legged squats in 1-G. The motion was modeled in OpenSim, an open-source software, and inverse dynamics were applied in order to determine the muscle and reaction forces of lower limb joints. Vibration stimulus was modeled by adding a 20 Hz sinusoidal force of 0.5 body weight to the force plate data. From the numerical model in a 1-G acceleration field, muscle forces for quadriceps femoris, plantar flexors and glutei increased substantially for one-legged squats with vibration compared to one- or two-legged squats without vibration. Additionally, joint reaction forces for one-legged squats with vibration also increased significantly compared to two-legged squats with or without vibration. Higher muscle forces and joint reaction forces might help to stimulate muscle activation and bone modeling and thus might reduce musculoskeletal deconditioning. These results indicate that the proposed countermeasure might surpass the performance of the current space countermeasures and should be further studied as a method of mitigating musculoskeletal deconditioning.  相似文献   
12.
In preparation for the International Space Station, the Enhanced Dynamic Load Sensors Space Flight Experiment measured the forces and moments astronauts exerted on the Mir Space Station during their daily on-orbit activities to quantify the astronaut-induced disturbances to the microgravity environment during a long-duration space mission. An examination of video recordings of the astronauts moving in the modules and using the instrumented crew restraint and mobility load sensors led to the identification of several typical astronaut motions and the quantification of the associated forces and moments exerted on the spacecraft. For 2806 disturbances recorded by the foot restraints and hand-hold sensor, the highest force magnitude was 137 N. For about 96% of the time, the maximum force magnitude was below 60 N, and for about 99% of the time the maximum force magnitude was below 90 N. For 95% of the astronaut motions, the rms force level was below 9.0 N. It can be concluded that expected astronaut-induced loads from usual intravehicular activity are considerably less than previously thought and will not significantly disturb the microgravity environment.  相似文献   
13.
Flexibility in system design and implications for aerospace systems   总被引:1,自引:0,他引:1  
The purpose of this paper is to review the concept of flexibility as discussed in various fields of investigations, to extract its characteristic features, and to explore its implications in the case of aerospace system design. In order to discuss any subject matter clearly, it is necessary to begin with a clear set of definitions. Indeed much can be gained through careful and consistent definitions of terms alone. Flexibility however is a word rich with ambiguity. While it is being increasingly used in various fields, few attempts have been made to formally define, quantify, and propose ways for achieving flexibility. This paper proposes to fill in part of this gap by synthesizing a clear and consistent definition of flexibility. It will do so by reviewing the usage of the term in various fields of inquiries, and show that it is indeed possible to clearly and unambiguously characterize flexibility, and to disentangle it from closely related concepts.  相似文献   
14.
15.
A laboratory test and several geophysical tests conducted in the last decades of the 20th century suggested deviations from the inverse square distance dependence of Newton’s law of gravity. While further work has failed to substantiate these results, renewed interest in inverse square law tests of increased sensitivity has been stimulated by a wide range of new theoretical ideas. Of particular interest are tests at submillimeter ranges, which could reveal the existence of compact new dimensions accessible only to gravity. This paper reviews the current status of inverse square law tests, with emphasis on present and proposed experimental techniques.  相似文献   
16.
The paper reviews the research that has been undertaken to understand and quantify the disturbance effects of the astronaut's motion inside and outside the spacecraft on the vehicle's attitude and acceleratory environment. In early investigations, the dynamic interaction of astronauts, modeled as point masses, and the spacecraft, modelled as a rigid body, was analyzed. Through ground-based experiments and the modeling of astronaut-induced forces and moments as stochastic processes, it became possible to estimate the magnitude and energy content of the loads produced by the astronaut. The first experiment in space to measure the astronaut-induced disturbances was conducted on the Skylab orbital station. Loads generated while performing routine operations were measured on board the Space Shuttle in 1994 and on the space station Mir in 1996–1997.  相似文献   
17.
The results of an initial examination of the LDEF MicroAbrasion Package (MAP) and limited results from other onboard hardware are presented. The intriguing tasks of interpreting these data in terms of the dynamics of a particulate distribution of natural and artificial origin are discussed. It emphasises the unique aspects of the mission and especially the attitude stabilisation which may be exploited to extract a greater range of information compared with that previously derived from space collections and exposure of similar passive sensors.  相似文献   
18.
This Note describes the dynamic load sensors (DLS) spaceflight experiment that measured middeck astronaut-induced disturbances during the 14-day STS-62 Space Shuttle mission in March 1994. The DLS experiment was flown in conjunction with the reflight of the Middeck 0-Gravity Dynamics Experiment (MODE). The objective of MODE was to investigate effects of the microgravity environment on large space structures. Where Skylab experiments focused on measuring the forces exerted during vigorous soaring activities, the DLS experiment quantified the reaction forces and moments exerted by the crew going about their normal on-orbit activities. The objective of this Note is to present DLS force data and frequency analysis that characterize astronaut-induced loads during spaceflight.  相似文献   
19.
Over recent times there has been a rise in the number of objects placed into Earth orbit. With various countries licensing a number of large constellations, the orbital population is set to increase dramatically. A significant number of technical advances have facilitated this and, in the UK and elsewhere, this has been matched by the updating of legislation and an increased policy focus on the need for increased space surveillance and tracking. The rise of large constellations coupled with an increasing number of experimental techniques such as active debris removal or on-orbit servicing procedures means that establishing fault will be crucial if litigation is to be successful. In doing this, any legal proceedings will look at both norms of behaviour, deviation from which will point towards fault and the types and standard of evidence that will be required.This paper will outline these problems in detail. It will be proposed that what is required to map out the contours of liability are both codification of the norms for satellite operations and clarity on protocols for evidence gathering in cases where fault may be contested in orbital operations. This discussion will identify that a way in which this could be achieved is by the use of “space law games”. These are simulations, similar to military war games, in which fictional scenarios could highlight some of the key legal issues that might need to be dealt with. The paper will outline some of the ways in which the law games might work and pose questions as to what data and other considerations will be needed to make such simulations meaningful.  相似文献   
20.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号