首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
航空   22篇
航天技术   2篇
航天   10篇
  2019年   1篇
  2018年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2001年   2篇
  1996年   1篇
  1992年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
Prominence seismology is a rapidly developing topic which seeks to infer the internal structure and properties of solar prominences from the study of its oscillations. Two-dimensional high-resolution observations suggest that filaments can be considered as made by small scale fibrils, having a cool region, stacked one after another in the vertical and horizontal directions. An extense observational background about oscillations in filaments has been gathered during the last 20 years and these observations point out that fibrils or groups of fibrils can oscillate independently. From the theoretical point of view, small amplitude oscillations in single and multifibril configurations have been studied as a first step to explain observational features.  相似文献   
12.
13.
In this review we present the main results obtained by the ISO satellite on the abundance and spatial distribution of water vapor in the direction of molecular clouds, evolved stars, galaxies, and in the bodies of our Solar System. We also discuss the modeling of H2O and the difficulties found in the interpretation of the data, the need of collisional rates and the perspectives that future high angular and high spectral resolution observations of H2O with the Herschel Space Observatory will open.  相似文献   
14.
15.
16.
Over the last years, Carbon Nanotubes (CNT) drew interdisciplinary attention. Regarding space technologies a variety of potential applications were proposed and investigated. However, no complex data on the behaviour and degradation process of carbon nanotubes under space environment exist. Therefore, it is necessary to investigate the performance of these new materials in space environment and to revaluate the application potential of CNTs in space technologies.Hence, CiREX (Carbon Nanotubes – Resistance Experiment) was developed as a part of a student project. It is a small and compact experiment, which is designed for CubeSat class space satellites. These are a class of nanosatellites with a standardized size and shape. The CiREX design, electrical measurements and the satellites interfaces will be discussed in detail. CiREX is the first in-situ space material experiment for CNTs.To evaluate the data obtained from CiREX, ground validation tests are mandatory. As part of an extensive test series the behaviour of CNTs under solar ultra violet light (UV) and vacuum ultraviolet light (VUV) was examined. Single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and MWNT/resin composite (ME) were exposed to different light sources. After the exposure, the defect density was investigated with Raman spectroscopy. There is a clear indication that UV and VUV light can increase the defect density of untreated CNTs and influence the electrical behaviour.  相似文献   
17.
With the maturing of space plasma research in the solar system, a more general approach to plasma physics in general, applied to cosmic plasmas, has become appropriate. There are both similarities and important differences in describing the phenomenology of space plasmas on scales from the Earth’s magnetosphere to galactic and inter-galactic scales. However, there are important aspects in common, related to the microphysics of plasma processes. This introduction to a coordinated collection of papers that address the several aspects of the microphysics of cosmic plasmas that have unifying themes sets out the scope and ambition of the broad sweep of topics covered in the volume, together with an enumeration of the detailed objectives of the coverage.  相似文献   
18.
Biochips are promising instruments for the search for organic molecules in planetary environments. Nucleic acid aptamers are powerful affinity receptors known for their high affinity and specificity, and therefore are of great interest for space biochip development. A wide variety of aptamers have already been selected toward targets of astrobiological interest (from amino acids to microorganisms). We present a first study to test the resistance of these receptors to the constraints of the space environment. The emphasis is on the effect of cosmic rays on the molecular recognition properties of DNA aptamers. Experiments on beam-line facilities have been conducted with 2 MeV protons and fluences much higher than expected for a typical mission to Mars. Our results show that this irradiation process did not affect the performances of DNA aptamers as molecular recognition tools.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号