Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type. 相似文献
The potential benefits to humankind of space exploration are tremendous. Space is not only the final frontier but is also the next marketplace. The orbital space above Earth offers tremendous opportunities for both strategic assets and commercial development. The critical obstacle retarding the use of the space around the Earth is the lack of low cost access to orbit. Further out, the next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next 30 years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. Both of these missions will change the outlook and perspective of every human being on the planet. However, these missions are expensive and extremely difficult. Chemical propulsion has demonstrated an inability to achieve orbit cheaply and is a very high-risk option to accomplish the Mars mission. An alternative solution is to develop a high performance propulsion system. Nuclear propulsion has the potential to be such a system. The question will be whether humanity is willing to take on the challenge. 相似文献
ABSTRACT In three experiments, after exploring a virtual environment (VE), adult participants made spatial judgments about the location of target objects that were higher and lower than their perceived test location within the VE. In Experiment 1, the locations of the target objects were inferred from verbal instructions. The main results were a tendency to judge objects as closer to the horizontal plane than their true locations, and more efficient downward than upward judgments. Both effects generally accord with findings reported by Wilson et al. (2004aWilson, P. N., Foreman, N., Stanton, D. and Duffy, H.2004a. Memory for targets in a multilevel simulated environment: Evidence for vertical asymmetry in spatial memory. Memory & Cognition, 32: 283–297. [Crossref], [Google Scholar], 2004bWilson, P. N., Foreman, N., Stanton, D. and Duffy, H.2004b. Memory for targets in a multi-level simulated-environment: A comparison between able-bodied and physically disabled children. British Journal of Psychology, 95: 325–338. [Google Scholar]). In Experiments 2 and 3, which were closely modeled on the design of the Wilson et al. studies, regression to the horizontal plane was noted but no downward bias was observed. A misperception in the viewing height between the floors and ceilings of the virtual rooms was apparent in both experiments. The results from the present study together with earlier investigations suggest different hierarchical encoding of between-axis and within-axis information. 相似文献
The results of a large number of the antenna radiometric measurements at bands of 92, 18, 6.2, 1.35, and 1.7-1.2 cm are presented by the data of the standard telemetry system of the Spektr-R spacecraft. Both special sessions of calibration object observations in the mode of a single space radio telescope (SRT) operation and numerous observations of researched sources in the mode of the ground-space interferometer were used. The obtained results agree with the first results of Kardashev et al. (2013), i.e., within 10–15% at bands of 92, 18, and 6.2 cm and 20–25% at the band of 1.35 cm. In the main, the measurements for the eight subbands at wavelengths of 1.7-1.2 cm indicate a monotonic increase in the spectral system equivalent flux density (SEFD) of noise radiation with a frequency consistent with the calculated estimates for the discussed model. The sensitivity of the ground-space interferometer for the five subbands at wavelengths from 1.35 to 1.7 cm can be higher by a factor of 1.5, and for the three subbands from 1.35 to 1.2 cm lower by a factor of 1.5 than at the band of 1.35 cm. The SRT contribution to the interferometer sensitivity proportional to the square root of SEFD is close to the design one at the bands of 92 and 18 cm and decreases the design sensitivity approximately by a factor of 1.5 and 2 at the bands of 6.2 and 1.35 cm, respectively. These differences of implemented values from the design ones were not significantly affected the scientific program implementation. 相似文献
Recent advances in materials technology have improved the performance capabilities of inflatable, flexible composite structures, which have increased their potential for use in numerous space applications. Space suits, which are comprised of flexible composite components, are a good example of the successful use of inflatable composite structures in space. Space suits employ inflatables technology to provide a stand alone spacecraft for astronauts during extra-vehicular activity. A natural extension of this application of inflatables technology is in orbital or planetary habitat structures. NASA Johnson Space Center (JSC) is currently investigating flexible composite structures deployed via inflation for use as habitats, transfer vehicles and depots for continued exploration of the Moon and Mars.
Inflatable composite structures are being investigated because they offer significant benefits over conventional structures for aerospace applications. Inflatable structures are flexible and can be packaged in smaller and more complex shaped volumes, which result in the selection of smaller launch vehicles which dramatically reduce launch costs. Inflatable composite structures are typically manufactured from materials that have higher strength to weight ratios than conventional systems and are therefore lower in mass. Mass reductions are further realized because of the tailorability of inflatable composite structures, which allow the strength of the system to be concentrated where needed. Flexible composite structures also tend to be more damage tolerant due to their “forgiveness” as compared to rigid mechanical systems. In addition, inflatables have consistently proven to be lower in both development and manufacturing costs.
Several inflatable habitat development programs are discussed with their increasing maturation toward use on a flight mission. Selected development programs being discussed include several NASA Langley Research Center habitat programs that were conducted in the 1960s, the Lawrence Livermore National Laboratory inflatable space station study, the NASA JSC deployable inflatable Lunar habitat study, and the inflatable Mars TransHab study and test program currently ongoing at NASA JSC. Relevant technology developments made by ILC Dover are also presented. 相似文献
The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure. 相似文献
The Ca
K line has been measured regularly nearly every month since 1974 at Kitt Peak. It is well known that the K1 component of the Ca
K line is formed in the temperature minimum region (TMR) of the solar atmosphere. Our study of the data of CaII K profiles over two solar cycles indicates that both in full disc integrated spectra and in center disc spectra, the distance between the red K1 and the blue K1 of the profiles and its average intensity show periodic variations. But the variation for the full disc integrated spectra fluctuates in the same way as the sunspot number does, while that for the center disc spectra has a time delay with respect to sunspot number. Non-LTE computations yield a cyclic temperature variation of about 17 K of the TMR in the quiet-Sun atmosphere and a cyclic variation of about 15–20 km in the height position of the TMR. 相似文献
The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged. 相似文献