首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18367篇
  免费   77篇
  国内免费   129篇
航空   10068篇
航天技术   5383篇
综合类   248篇
航天   2874篇
  2021年   166篇
  2018年   236篇
  2016年   168篇
  2014年   436篇
  2013年   515篇
  2012年   425篇
  2011年   621篇
  2010年   443篇
  2009年   787篇
  2008年   820篇
  2007年   394篇
  2006年   430篇
  2005年   397篇
  2004年   448篇
  2003年   534篇
  2002年   486篇
  2001年   582篇
  2000年   359篇
  1999年   462篇
  1998年   434篇
  1997年   325篇
  1996年   382篇
  1995年   443篇
  1994年   418篇
  1993年   356篇
  1992年   327篇
  1991年   249篇
  1990年   236篇
  1989年   399篇
  1988年   209篇
  1987年   239篇
  1986年   232篇
  1985年   637篇
  1984年   516篇
  1983年   408篇
  1982年   486篇
  1981年   609篇
  1980年   245篇
  1979年   188篇
  1978年   189篇
  1977年   144篇
  1976年   156篇
  1975年   187篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
821.
This paper analyses the fuel consumption of interferometric radar missions employing small satellite formations like, e.g., Cross-track Pendulum, Cartwheel, CarPe, or Trinodal Pendulum. Individual analytic expressions are provided for each of the following contributions: separation from a simultaneously injected master satellite, formation set-up, orbit maintenance, formation maintenance, and distance maintenance. For this, a general system of equations is derived describing the relative motion of the small satellites in a co-rotating reference frame. The transformation into Keplerian elements is carried out. To evaluate fuel consumption, three master satellites are assumed in different orbital heights, which are typical for Earth observation missions. The size of the exemplarily analysed formations is defined by remote sensing aspects and their respective fuel requirements are estimated. Furthermore, a collision avoidance concept is introduced, which includes a formation separation and formation set-up after a desired time period.  相似文献   
822.
An efficient self-contained trajectory optimization software is generated by making use of de Pontécoulant's analytic lunar theory removing the need for an outside third body ephemeris program to compute the lunar and solar position vectors at each integration step. The accelerations being further resolved along the rotating Euler–Hill frame after expansion to third order in the spacecraft radial distance, the adjoint differential equations are derived in a direct manner complementing the generation of the dynamic system of equations for full compatibility. Because the variation of parameters equations are cast in terms of the nonsingular equinoctial elements with the perturbation accelerations resolved in their analytic form along the rotating axes, the adjoint equations are also derived in the same manner providing a highly efficient and accurate system of equations for rapid computations in conjunction with Aerospace Corporation's NLP2 nonlinear programming codes to search for the initial values of the multipliers that steer the spacecraft towards its target orbit in minimum time. Numerical simulations show that the solutions obtained by the analysis developed in this paper are essentially identical to the more indirect approach based on the use of inertial accelerations obtained from a separate ephemeris generator and subsequent conversions to the thrust frame and equinoctial system.  相似文献   
823.
824.
We have performed spectral processing of the data of experiments on radio sounding of circumsolar plasma by coherent S- and X-band signals from the spacecraft Ulysses, Mars Express, Rosetta, and Venus Express carried out from 1991 to 2009. The experiments were realized in the mode of coherent response, when a signal stabilized by the hydrogen standard is transmitted from the ground station to a spacecraft, received by the onboard systems, and retransmitted to the Earth with conserved coherence. Thus, the signal sounding the coronal plasma passes twice through the medium: on the propagation path ground station — spacecraft and on the same path in the opposite direction. The spectra of frequency fluctuations in both the bands are obtained and, using them, the radial dependences of fluctuation intensities are found, which can be approximated by a power law. It is shown that the ratio of intensities of frequency fluctuations in the S- and X-bands is comparable with the theoretical value and characterizes the degree of correlation of irregularities of the electron density along the propagation path ground station — spacecraft and back. Analysis of the correlation of frequency fluctuations on the two paths allows one to get a lower estimate of the outer scale of the circumsolar plasma turbulence. For heliocentric distances R = 10 solar radii (R S ) the outer scale is larger than 0.25R S .  相似文献   
825.
We study the influence of additive and parametric slowly varying harmonic (at the Chandler frequency and doubled frequency) and stochastic Gaussian broadband perturbations on mathematical expectations, variances, and covariations of oscillations of the Earth’s pole. The influence of perturbations on both regular and irregular stochastic oscillations is considered in detail. Results of numerical experiments are presented. The developed models and software are included into information resources on the fundamental problem “Statistical dynamics of the Earth’s rotation” of Russian Academy of Sciences.  相似文献   
826.
We describe the results of determining the mass of the International Space Station using the data of MAMS accelerometer taken during correction of the station orbit on August 20, 2004. The correction was made by approach and attitude control engines (ACE) of the Progress transporting spacecraft. The engines were preliminary calibrated in an autonomous flight using the onboard device for measuring apparent velocity increment. The method of calibration is described and its results are presented. The error in station mass determination is about 1%. The same data of MAMS and similar data obtained during the orbit correction on August 26, 2004 were used for the analysis of high-frequency vibrations of the station mainframe caused by operation of the ACE of Progress. Natural frequencies of the ACE are determined. They lie in the frequency band 0.024–0.11 Hz. ACE operation is demonstrated to result in a substantial increase of microaccelerations onboard the station in the frequency range 0–1 Hz. The frequencies are indicated at which disturbances increase by more than an order of magnitude. The study described was carried out as a part of the Tensor technological experiment.  相似文献   
827.
On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries.The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft “Bion-M” and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments.  相似文献   
828.
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
• new mission trajectories and concepts;
• operational command and control considerations;
• expected science, operational, resource utilization, and impact mitigation returns; and
• continued exploration momentum and future Mars exploration benefits.
Keywords: NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space  相似文献   
829.
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges.  相似文献   
830.
The Venus Express mission is the European Space Agency's (ESA) first spacecraft at Venus. It was launched in November 2005 by a Soyuz–Fregat launcher and arrived at Venus in April 2006. The mission covers a broad range of scientific goals including physics, chemistry, dynamics and structure of the atmosphere as well as atmospheric interaction with the surface and several aspects of the surface itself. Furthermore, it investigates the plasma environment and interaction of the solar wind with the atmosphere and escape processes.One month after the arrival at Venus the Venus Express spacecraft started routine science operations. Since then Venus Express has been observing Venus every day for more than one year continuously making new discoveries.In order to ensure that all the science objectives are fulfilled the Venus Express Science Operations Centre (VSOC) has the task of coordinating and implementing the science operations for the mission. During the first year of Venus observations the VSOC and the experiment teams gained a lot of experience in how to make best use of the observation conditions and payload capabilities. While operating the spacecraft in orbit we also acquired more knowledge on the technical constraints and more insight in the science observations and their results.As the nominal mission is coming to an end, the extended mission will start from October 2007. The Extended Science Mission Plan was developed taking into account the lessons learned. At the same time new observations were added along with specific fine-tuned observations in order to complete the science objectives of the mission.This paper will describe how the previous observations influence the current requirements for the observations around Venus today and how they influence the observations in the mission extension. Also it will give an overview of the Extended Science Mission Plan and its challenges for the future observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号