首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6071篇
  免费   28篇
  国内免费   12篇
航空   2731篇
航天技术   2008篇
综合类   29篇
航天   1343篇
  2021年   59篇
  2019年   39篇
  2018年   169篇
  2017年   135篇
  2016年   133篇
  2015年   57篇
  2014年   152篇
  2013年   188篇
  2012年   180篇
  2011年   244篇
  2010年   199篇
  2009年   290篇
  2008年   321篇
  2007年   185篇
  2006年   135篇
  2005年   176篇
  2004年   163篇
  2003年   199篇
  2002年   139篇
  2001年   217篇
  2000年   103篇
  1999年   120篇
  1998年   152篇
  1997年   105篇
  1996年   131篇
  1995年   195篇
  1994年   155篇
  1993年   84篇
  1992年   122篇
  1991年   42篇
  1990年   57篇
  1989年   121篇
  1988年   50篇
  1987年   48篇
  1986年   48篇
  1985年   159篇
  1984年   141篇
  1983年   123篇
  1982年   116篇
  1981年   158篇
  1980年   47篇
  1979年   43篇
  1978年   41篇
  1977年   40篇
  1976年   30篇
  1975年   47篇
  1974年   33篇
  1973年   23篇
  1972年   43篇
  1971年   28篇
排序方式: 共有6111条查询结果,搜索用时 15 毫秒
991.
In the framework of the general theory for unsteady weakly disturbed fluid flows with free boundaries, a problem is solved to calculate a jet flow around the cascade of plates executing the harmonic oscillations. We developed a program that enables us for the first time to carry out systematic calculations of flow characteristics depending on arbitrary values of determining parameters.  相似文献   
992.
We present the results of experimental studies of the fuel hydrogen additive influence on the characteristics of a gas-piston engine converted for operation by natural gas under changes of an ignition advance angle (IAA). The results of investigations were used to determine the influence of the hydrogen additive on the effective engine efficiency and fuel consumption under IAA changes.  相似文献   
993.
Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the “ISS” have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device “Pneumocard” was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex “Pneumocard” was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates.HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight.Our results demonstrate that autonomic function testing aboard the ISS using “Pneumocard” is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut.Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant and compelling.  相似文献   
994.
India has established a ‘critical mass’ in terms of EO infrastructure for disaster management. Starting from IRS 1A in 1980s to the most recent CARTOSAT-2, India's EO series of satellites are moving away from the generic to thematic constellations. The series of RESOURCESAT, CARTOSAT, OCEANSAT and forthcoming Radar Imaging Satellite (RISAT) satellites exemplifies the thematic characters of the EO missions. These thematic constellations, characterized with multi-platform, multi-resolution and multi-parameter EO missions, are important assets for disaster reduction. In the more specific term, these constellations in conjunction with contemporary EO missions address the critical observational gaps in terms of capturing the catastrophic events, phenomena or their attributes on real/near real time basis with appropriate spatial and temporal attributes.Using conjunctively the data primarily emanating these thematic constellations and all weather radar data from aerial platform and also from RADARSAT as gap-fillers has been a part of India's EO strategy for disaster management. The infrastructure has been addressing the observational needs in disaster management. The high resolution imaging better than one-meter spatial resolution and also Digital Elevation Models (DEM) emanating from Cartosat series are providing valuable inputs to characterize geo-physical terrain vulnerability. Radar Imaging Satellite, with all weather capability missions, is being configured for disaster management. At present, the current Indian EO satellites cover the whole world every 40 h (with different resolutions and swaths), and the efforts are towards making it better than 24 h. The efforts are on to configure RESOURCESAT 3 with wider swath of 740 km with 23 m spatial resolution and also to have AWiFS type of capability at geo-platform to improve the observational frequencies for disaster monitoring.India's EO infrastructure has responded comprehensively to all the natural disasters the country has faced in the recent times. As a member of International Charter on Space and Major Disasters, India has also been instrumental in promoting the related UN initiatives viz., RESAP of UN ESCAP, SPIDER of UN OOSA, Sentinel Asia of JAXA initiative and also of GEOSS initiative. The paper intends to illustrate India's EO strategy for disaster reduction.  相似文献   
995.
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges.  相似文献   
996.
The Venus Express mission is the European Space Agency's (ESA) first spacecraft at Venus. It was launched in November 2005 by a Soyuz–Fregat launcher and arrived at Venus in April 2006. The mission covers a broad range of scientific goals including physics, chemistry, dynamics and structure of the atmosphere as well as atmospheric interaction with the surface and several aspects of the surface itself. Furthermore, it investigates the plasma environment and interaction of the solar wind with the atmosphere and escape processes.One month after the arrival at Venus the Venus Express spacecraft started routine science operations. Since then Venus Express has been observing Venus every day for more than one year continuously making new discoveries.In order to ensure that all the science objectives are fulfilled the Venus Express Science Operations Centre (VSOC) has the task of coordinating and implementing the science operations for the mission. During the first year of Venus observations the VSOC and the experiment teams gained a lot of experience in how to make best use of the observation conditions and payload capabilities. While operating the spacecraft in orbit we also acquired more knowledge on the technical constraints and more insight in the science observations and their results.As the nominal mission is coming to an end, the extended mission will start from October 2007. The Extended Science Mission Plan was developed taking into account the lessons learned. At the same time new observations were added along with specific fine-tuned observations in order to complete the science objectives of the mission.This paper will describe how the previous observations influence the current requirements for the observations around Venus today and how they influence the observations in the mission extension. Also it will give an overview of the Extended Science Mission Plan and its challenges for the future observations.  相似文献   
997.
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   
998.
With rich experience of the successful Indian remote sensing satellite series, Indian Space Research Organization (ISRO) has started theme-based satellites like Resourcesat and Oceansat. Further taking the advantage of the improved technologies in areas of miniaturization, the micro- and mini-satellite series have been started, which will provide opportunity for the payloads of stand-alone missions, for applications, study or research. These include payloads for Earth imaging, atmospheric monitoring, ocean monitoring, scientific applications, and stellar observation. The micro-satellites are of 100 kg class, planned with a payload of about 30 kg and 20 W power and mini-satellites of 450 kg class for payloads of 200 kg and power of 200 W. The first satellite in the micro-satellite series is an Earth imaging payload followed by the second satellite with scientific payloads with the participation of students. Further the scientific proposals for micro-satellites are under evaluation. Similarly the first two missions of mini-satellites are defined with first one carrying ocean and environment monitoring payloads followed by the Earth imaging satellite with multi-spectral camera with 700 km swath. The current paper touches upon the technology involved in realization of the micro- and mini-satellites and the scope of applications of the series.  相似文献   
999.
On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries.The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft “Bion-M” and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments.  相似文献   
1000.
We present the results of processing three 256-min series of observations of quasi-periodic oscillations of the field of line-of-sight velocities in three sunspots. The Doppler shifts were determined simultaneously for six spectral lines formed at different heights in the solar atmosphere. In addition to the well-known high-frequency (periods of 3–5 min) oscillations, a band of low-frequency oscillations with periods of 60–80 min is revealed in the spectra of the sunspot umbra and magnetic elements located in immediate proximity of the sunspot. Unlike the short-period modes, the power of the long-period mode of line-of-sight velocity oscillations in the sunspot decreases sharply with height: these oscillations are distinctly seen in the line formed at a height of 200 km and almost are not seen in the line with the formation height of 500 km. This is indicative of different physical nature of the short-period and long-period oscillations of a sunspot. If the former are caused by slow magnetosonic waves within the field tube of the spot, the latter are representative of global vertical-radial oscillations of a magnetic element (spot, pore) as a whole near the position of a stable equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号