全文获取类型
收费全文 | 6951篇 |
免费 | 35篇 |
国内免费 | 14篇 |
专业分类
航空 | 3346篇 |
航天技术 | 2454篇 |
综合类 | 27篇 |
航天 | 1173篇 |
出版年
2021年 | 63篇 |
2019年 | 42篇 |
2018年 | 140篇 |
2017年 | 93篇 |
2016年 | 97篇 |
2015年 | 52篇 |
2014年 | 169篇 |
2013年 | 182篇 |
2012年 | 190篇 |
2011年 | 260篇 |
2010年 | 184篇 |
2009年 | 311篇 |
2008年 | 395篇 |
2007年 | 181篇 |
2006年 | 157篇 |
2005年 | 202篇 |
2004年 | 173篇 |
2003年 | 243篇 |
2002年 | 138篇 |
2001年 | 246篇 |
2000年 | 126篇 |
1999年 | 160篇 |
1998年 | 189篇 |
1997年 | 131篇 |
1996年 | 156篇 |
1995年 | 223篇 |
1994年 | 202篇 |
1993年 | 110篇 |
1992年 | 162篇 |
1991年 | 79篇 |
1990年 | 68篇 |
1989年 | 160篇 |
1988年 | 73篇 |
1987年 | 76篇 |
1986年 | 69篇 |
1985年 | 181篇 |
1984年 | 157篇 |
1983年 | 143篇 |
1982年 | 154篇 |
1981年 | 190篇 |
1980年 | 64篇 |
1979年 | 60篇 |
1978年 | 56篇 |
1977年 | 45篇 |
1976年 | 44篇 |
1975年 | 55篇 |
1974年 | 45篇 |
1973年 | 40篇 |
1972年 | 52篇 |
1971年 | 38篇 |
排序方式: 共有7000条查询结果,搜索用时 68 毫秒
381.
Stratton D.A. Stengel R.F. 《IEEE transactions on aerospace and electronic systems》1993,29(4):1185-1194
Severe low-altitude wind shear is a threat to aviation safety. Newly developed airborne sensors measure the radial component of wind along a line directly in front of an aircraft. The authors use optimal estimation theory to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. Statistical analysis methods to refine wind shear detection algorithm robustness are presented. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear 相似文献
382.
A NLTE-analysis is presented of high S/N spectra of the optical component of the standard massive X-ray binary Vela X-1. In combination with the orbital parameters we conclude that the optical star is highly helium enriched and is significantly overluminous compared to standard evolutionary tracks of massive accretion stars. We then propose a new accretion model able to explain these features. 相似文献
383.
J. D. Anderson J. W. Armstrong J. K. Campbell F. B. Estabrook T. P. Krisher E. L. Lau 《Space Science Reviews》1992,60(1-4):591-610
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992. 相似文献
384.
The Galileo Probe Atmosphere Structure Instrument will make in-situ measurements of the temperature and pressure profiles of the atmosphere of Jupiter, starting at about 10-10 bar level, when the Probe enters the upper atmosphere at a velocity of 48 km s-1, and continuing through its parachute descent to the 16 bar level. The data should make possible a number of inferences relative to atmospheric and cloud physical processes, cloud location and internal state, and dynamics of the atmosphere. For example, atmospheric stability should be defined, from which the convective or stratified nature of the atmosphere at levels surveyed should be determined and characterized, as well as the presence of turbulence and/or gravity waves. Because this is a rare opportunity, sensors have been selected and evaluated with great care, making use of prior experience at Mars and Venus, but with an eye to special problems which could arise in the Jupiter environment. The temperature sensors are similar to those used on Pioneer Venus; pressure sensors are similar to those used in the Atmosphere Structure Experiment during descent of the Viking Landers (and by the Meteorology Experiment after landing on the surface); the accelerometers are a miniaturized version of the Viking accelerometers. The microprocessor controlled experiment electronics serve multiple functions, including the sequencing of experiment operation in three modes and performing some on-board data processing and data compression. 相似文献
385.
Design for validation 总被引:2,自引:0,他引:2
An approach is outlined for the development of ultrareliable avionics for civil air transports using a design-for-validation philosophy that includes rigorous application of formal methods. The basic concept of the methodology is introduced, and the role of formal methods is explored. The impact of the design-for-validation philosophy on the system design process is then demonstrated by two simple examples. More details about the design-for-validation methodology are then given 相似文献
386.
McGoey-Smith A.D. Vant M.R. 《IEEE transactions on aerospace and electronic systems》1992,28(3):666-674
When the basic step transform algorithm is used to compress synthetic-aperture radar (SAR) signals in azimuth, the linear FM rate and sampling rate must satisfy certain tight constraints. In practice, these constraints cannot be satisfied and errors are introduced into the compressed SAR image. A modification is described of the basic step transform which incorporates interpolation and resampling into the algorithm. These changes allow the removal of the constraints and make the step transform more useful for the compression of real data. An autofocusing capability is also included, without introducing much additional complexity 相似文献
387.
F. Durret J. S. Kaastra J. Nevalainen T. Ohashi N. Werner 《Space Science Reviews》2008,134(1-4):51-70
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster
medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC
and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible
for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray
excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission. 相似文献
388.
Track-before-detect procedures for early detection of moving target from airborne radars 总被引:2,自引:0,他引:2
Buzzi S. Lops M. Venturino L. 《IEEE transactions on aerospace and electronic systems》2005,41(3):937-954
In this paper we present a family of track-before-detect (TBD) procedures for early detection of moving targets from airborne radars. Upon a sectorization of the coverage area, the received echoes are jointly processed in the azimuth-range-Doppler domain and in the time domain through a Viterbi-like algorithm that exploits the physically admissible target transitions between successive illuminations, in order to collect all of the energy back-scattered during the time on target (TOT). A reduced-complexity implementation is derived assuming, at the design stage, that the target does not change resolution cell during the TOT in each scan. The constant false alarm rate (CFAR) constraint is also englobed in the proposed procedures as well as the possibility of working with quantized data. Simulation results show that the proposed algorithms have good detection and tracking capabilities even for high target velocities and low quantization rates. 相似文献
389.
An urgent problem of organizing the on-line monitoring of large territories using the information unmanned aerial systems (UAS) is considered. We determine the UAS placement and their necessary number by solving a two-criteria problem on rational covering of the territory by these systems. A man-machine algorithm and an example of the problem solution are presented. 相似文献
390.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections
(CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast
and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called
the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the
magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead
to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection
processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this
study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology.
This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic
field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic
topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’. 相似文献