全文获取类型
收费全文 | 3498篇 |
免费 | 25篇 |
国内免费 | 5篇 |
专业分类
航空 | 1786篇 |
航天技术 | 1197篇 |
综合类 | 12篇 |
航天 | 533篇 |
出版年
2021年 | 30篇 |
2019年 | 27篇 |
2018年 | 63篇 |
2017年 | 46篇 |
2016年 | 47篇 |
2015年 | 23篇 |
2014年 | 67篇 |
2013年 | 84篇 |
2012年 | 81篇 |
2011年 | 118篇 |
2010年 | 89篇 |
2009年 | 135篇 |
2008年 | 184篇 |
2007年 | 91篇 |
2006年 | 79篇 |
2005年 | 94篇 |
2004年 | 87篇 |
2003年 | 115篇 |
2002年 | 70篇 |
2001年 | 122篇 |
2000年 | 73篇 |
1999年 | 83篇 |
1998年 | 106篇 |
1997年 | 70篇 |
1996年 | 95篇 |
1995年 | 131篇 |
1994年 | 102篇 |
1993年 | 62篇 |
1992年 | 90篇 |
1991年 | 34篇 |
1990年 | 39篇 |
1989年 | 86篇 |
1988年 | 43篇 |
1987年 | 37篇 |
1986年 | 35篇 |
1985年 | 96篇 |
1984年 | 92篇 |
1983年 | 83篇 |
1982年 | 83篇 |
1981年 | 90篇 |
1980年 | 27篇 |
1979年 | 27篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1976年 | 19篇 |
1975年 | 35篇 |
1974年 | 25篇 |
1973年 | 18篇 |
1972年 | 33篇 |
1971年 | 18篇 |
排序方式: 共有3528条查询结果,搜索用时 0 毫秒
781.
Association of DF Bearing Measurements with Radar Tracks 总被引:1,自引:0,他引:1
The problem of associating direction finding (DF) bearingmeasurements with radar tracks is formulated as a multiplehypothesis testing problem. A simple decision rule for associating aset of DF bearing measurements with no radar track or one of mpossible radar tracks was developed using a combination of Bayesian and Neyman-Pearson approaches. The decision algorithmwas checked using both computer simulations and experimentaldata. Finally, a multiplatform algorithm was formulated and tested,using a combination of real and synthetic data. 相似文献
782.
Cosmic Research - Numerical simulation of satellite stabilization towards the Sun for the batteries charge is performed. The magnetic attitude control system implements the Sdot algorithm. It... 相似文献
783.
784.
D. Winterhalter M. Neugebauer B. E. Goldstein E. J. Smith B. T. Tsurutani S. J. Bame A. Balogh 《Space Science Reviews》1995,72(1-2):201-204
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind. 相似文献
785.
This article discusses some of the problems facing man in space. Many of these problems are manifested only on return to Earth when the de-conditioned body again has to withstand the effects of gravity. 相似文献
786.
H. Fuke N. Izutsu D. Akita I. Iijima Y. Kato J. Kawada K. Matsushima Y. Matsuzaka E. Mizuta M. Namiki N. Nonaka S. Ohta Y. Saito T. Sato M. Seo Y. Shoji A. Takada K. Tamura M. Toriumi K. Yamada T. Yamagami T. Yoshida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The super-pressure balloon (SPB) has been expected to be a flight vehicle that can provide a long flight duration to science. Since 1997, we have developed the SPB. Now we are at the phase of developing an SPB of a practical size. In 2009, we carried out a test flight of a pumpkin-shaped SPB with a 60,000 m3 volume. The undesirable result of this flight aroused us to resolve the deployment instability of the pumpkin-shaped SPB, which has been known as one of the most challenging issues confronting SPB development. To explore this deployment issue, in 2010, we carried out a series of ground tests. From results of these tests, we found that an SPB design modified from pumpkin, named “tawara”, can be a good candidate to greatly improve the deployment stability of the lobed SPB. 相似文献
787.
788.
J.R. Fernandez C.J. Mertens D. Bilitza X. Xu J.M. Russell III M.G. Mlynczak 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
We present a new technique for improving ionospheric models of nighttime E-region electron densities under geomagnetic storm conditions using TIMED/SABER measurements of broadband 4.3 μm limb radiance. The response of E-region electron densities to geomagnetic activity is characterized by SABER-derived NO+(v) 4.3 μm Volume Emission Rates (VER). A storm-time E-region electron density correction factor is defined as the ratio of storm-enhanced NO+(v) VER to a quiet-time climatological average NO+(v) VER, which will be fit to a geomagnetic activity index in a future work. The purpose of this paper is to demonstrate the feasibility of our technique in two ways. One, we compare storm-to-quiet ratios of SABER-derived NO+(v) VER with storm-to-quiet ratios of electron densities measured by Incoherent Scatter Radar. Two, we demonstrate that NO+(v) VER can be parameterized by widely available geomagnetic activity indices. The storm-time correction derived from NO+(v) VER is applicable at high-latitudes. 相似文献
789.
790.
C. M. Lisse M. F. A’Hearn T. L. Farnham O. Groussin K. J. Meech U. Fink D. G. Schleicher 《Space Science Reviews》2005,117(1-2):161-192
As comet 9P/Tempel 1 approaches the Sun in 2004–2005, a temporary atmosphere, or “coma,” will form, composed of molecules
and dust expelled from the nucleus as its component icy volatiles sublimate. Driven mainly by water ice sublimation at surface
temperatures T > 200 K, this coma is a gravitationally unbound atmosphere in free adiabatic expansion. Near the nucleus (≤ 102 km), it is in collisional equilibrium, at larger distances (≥104 km) it is in free molecular flow. Ultimately the coma components are swept into the comet’s plasma and dust tails or simply
dissipate into interplanetary space. Clues to the nature of the cometary nucleus are contained in the chemistry and physics
of the coma, as well as with its variability with time, orbital position, and heliocentric distance.
The DI instrument payload includes CCD cameras with broadband filters covering the optical spectrum, allowing for sensitive
measurement of dust in the comet’s coma, and a number of narrowband filters for studying the spatial distribution of several
gas species. DI also carries the first near-infrared spectrometer to a comet flyby since the VEGA mission to Halley in 1986.
This spectrograph will allow detection of gas emission lines from the coma in unprecedented detail. Here we discuss the current
state of understanding of the 9P/Tempel 1 coma, our expectations for the measurements DI will obtain, and the predicted hazards
that the coma presents for the spacecraft.
An erratum to this article is available at . 相似文献