首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   7篇
  国内免费   7篇
航空   126篇
航天技术   42篇
综合类   14篇
航天   227篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   5篇
  2013年   1篇
  2012年   13篇
  2011年   18篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   9篇
  2006年   8篇
  2005年   25篇
  2004年   10篇
  2003年   11篇
  2002年   14篇
  2001年   12篇
  2000年   5篇
  1999年   9篇
  1998年   18篇
  1997年   11篇
  1996年   16篇
  1995年   28篇
  1994年   24篇
  1993年   5篇
  1992年   9篇
  1991年   12篇
  1990年   2篇
  1989年   11篇
  1988年   11篇
  1987年   14篇
  1986年   2篇
  1985年   16篇
  1984年   14篇
  1983年   20篇
  1982年   12篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
121.
122.
123.
This article discusses some of the problems facing man in space. Many of these problems are manifested only on return to Earth when the de-conditioned body again has to withstand the effects of gravity.  相似文献   
124.
1.引言在研究结构动力特性和其他物理性质时,人们发现各种振源在时间上是随机的,因此其效果不能用正弦激振来恰当地模拟。最近几年,人们对用以确定结构对随机振动的响应的试验仪器和方法进行了大量研究。这种研究特别困难,因为随机过程的性质很复杂,需要用比较精密的仪器来产生和分析随机振动。最大的困难在于需要对电磁激振器一试件系  相似文献   
125.
本文介绍一种用直接最佳法来设计最大推力喷管型面的方法。用一个二次多项式来模仿具有固定初始膨胀表面的喷管型面。多项式的系数随确定最大推力喷管型面的直接最佳法而改变。考虑三种直接最佳法:多维线坐标研究、最速下降法和牛顿法。提出结果,以便图解说明三种直接法的特点,证明二项式型面产生的推力基本上与用变分法确定的喷管型面所产生的推力是相同的。  相似文献   
126.
With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.  相似文献   
127.
As the field of astrobiology matures and search strategies for life on other worlds are developed, the need to analyze in a systematic way the plausibility for life on other planetary systems becomes increasingly apparent. We propose the adoption of a simple plausibility of life (POL) rating system based on specific criteria. Category I applies to any body shown to have conditions essentially equivalent to those on Earth. Category II applies to bodies for which there is evidence of liquid water and sources of energy and where organic compounds have been detected or can reasonably be inferred (Mars, Europa). Category III applies to worlds where conditions are physically extreme but possibly capable of supporting exotic forms of life unknown on Earth (Titan, Triton). Category IV applies to bodies that could have seen the origin of life prior to the development of conditions so harsh as to make its perseverance at present unlikely but conceivable in isolated habitats (Venus, Io). Category V would be reserved for sites where conditions are so unfavorable for life by any reasonable definition that its origin or persistence there cannot be rated a realistic probability (the Sun, gas giant planets). The proposed system is intended to be generic. It assumes that life is based on polymeric chemistry occurring in a liquid medium with uptake and degradation of energy from the environment. Without any additional specific assumptions about the nature of life, the POL system is universally applicable.  相似文献   
128.
Stable carbon isotope ratios (delta(13)C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of delta(13)C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the delta(13)C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO(2 )fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.  相似文献   
129.
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ~100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ~10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ~7% and brightness temperature errors of less than 1?K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.  相似文献   
130.
In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号