首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4830篇
  免费   6篇
  国内免费   12篇
航空   2528篇
航天技术   1557篇
综合类   181篇
航天   582篇
  2021年   33篇
  2018年   74篇
  2017年   37篇
  2016年   41篇
  2014年   73篇
  2013年   99篇
  2012年   106篇
  2011年   159篇
  2010年   101篇
  2009年   183篇
  2008年   191篇
  2007年   114篇
  2006年   87篇
  2005年   84篇
  2004年   114篇
  2003年   139篇
  2002年   180篇
  2001年   198篇
  2000年   93篇
  1999年   123篇
  1998年   154篇
  1997年   99篇
  1996年   138篇
  1995年   168篇
  1994年   146篇
  1993年   95篇
  1992年   122篇
  1991年   57篇
  1990年   63篇
  1989年   125篇
  1988年   58篇
  1987年   60篇
  1986年   52篇
  1985年   152篇
  1984年   120篇
  1983年   108篇
  1982年   117篇
  1981年   153篇
  1980年   56篇
  1979年   46篇
  1978年   57篇
  1977年   40篇
  1976年   40篇
  1975年   48篇
  1974年   39篇
  1973年   25篇
  1972年   49篇
  1971年   47篇
  1970年   30篇
  1969年   33篇
排序方式: 共有4848条查询结果,搜索用时 15 毫秒
151.
152.
153.

A Time-Delay Integration (TDI) image acquisition and processing system has been developed to capture ICON’s Far Ultraviolet (FUV) Spectrographic Imager data. The TDI system is designed to provide variable-range motion-compensated imaging of Earth’s nightside ionospheric limb and sub-limb scenes viewed from Low Earth Orbit in the 135.6 nm emission of oxygen with an integration time of 12 seconds. As a pre-requisite of the motion compensation the TDI system is also designed to provide corrections for optical distortions generated by the FUV Imager’s optical assembly. On the dayside the TDI system is used to process 135.6 nm and 157.0 nm wavelength altitude profiles simultaneously. We present the TDI system’s design methodology and implementation as an FPGA module with an emphasis on minimization of on-board data throughput and telemetry. We also present the methods and results of testing the TDI system in simulation and with Engineering Ground Support Equipment (EGSE) to validate its performance.

  相似文献   
154.
Data from ARCS rocket ion beam injection experiments will be primarily discussed in this paper. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes. Future work will concentrate on the wave production and wave-particle interactions that produce the plasma/energetic particle effects discussed in this paper and which have direct application to natural phenomena in the upper ionosphere and magnetosphere.  相似文献   
155.
Journal of Reducing Space Mission Cost -  相似文献   
156.
Turner RE  Baker JC 《Acta Astronautica》1998,42(1-8):107-114
The high inclination orbit for the International Space Station poses a risk to astronauts on EVA during occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. We are currently unable to predict these events within the few-hour lead time required for evasive action. Compounding the threat is the fact that station construction occurs during increasing solar activity and through the peak of the solar cycle. In this paper we present an overview of the risk, the current methods to provide forecasts of SPEs, and potential risk mitigation options.  相似文献   
157.
Cognitive performance aboard the life and microgravity spacelab   总被引:2,自引:0,他引:2  
The impact of microgravity and other stressors on cognitive performance need to be quantified before long duration space flights are planned or attempted since countermeasures may be required. Four astronauts completed 38 sessions of a 20-minute battery of six cognitive performance tests on a laptop computer. Twenty-four sessions were preflight, 9 sessions were in-orbit, and 5 sessions were postflight. Mathematical models of learning were fit to each subject's preflight data for each of 14 dependent variables. Assuming continued improvement, expected values were generated from the models for in-orbit comparison. Using single subject designs, two subjects showed statistically significant in-orbit effects. One subject was degraded in two tests, the other was degraded in one test and exceeded performance expectations in another. Other subjects showed no statistically significant effects on the tests. The factors causing the deterioration in the two subjects can not be determined without appropriate ground-based control groups.  相似文献   
158.
In 1996 the NASA Advisory Council asked for a comprehensive look at future launch projections out to the year 2030 and beyond. In response to this request NASA sponsored a study at The Aerospace Corporation to develop long-range space transportation models for future commercial and government applications, and to analyze the design considerations and desired characteristics for future space transportation systems. Follow-ons to present space missions as well as a wide array of potential new space applications are considered in the study. This paper summarizes the space transportation system characteristics required to enable various classes of future missions. High reliability and the ability to achieve high flight rates per vehicle are shown to be key attributes for achieving more economical launch systems. Technical, economic and policy implications are also discussed.  相似文献   
159.
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   
160.
Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号