首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3810篇
  免费   3篇
  国内免费   9篇
航空   1712篇
航天技术   1403篇
综合类   10篇
航天   697篇
  2021年   28篇
  2018年   56篇
  2017年   51篇
  2016年   47篇
  2014年   65篇
  2013年   104篇
  2012年   88篇
  2011年   153篇
  2010年   107篇
  2009年   151篇
  2008年   197篇
  2007年   111篇
  2006年   78篇
  2005年   112篇
  2004年   127篇
  2003年   123篇
  2002年   81篇
  2001年   117篇
  2000年   60篇
  1999年   86篇
  1998年   107篇
  1997年   77篇
  1996年   70篇
  1995年   109篇
  1994年   125篇
  1993年   64篇
  1992年   76篇
  1991年   32篇
  1990年   42篇
  1989年   68篇
  1988年   30篇
  1987年   26篇
  1986年   38篇
  1985年   125篇
  1984年   111篇
  1983年   91篇
  1982年   77篇
  1981年   155篇
  1980年   31篇
  1979年   34篇
  1978年   37篇
  1977年   34篇
  1976年   29篇
  1975年   34篇
  1974年   29篇
  1973年   31篇
  1972年   41篇
  1971年   22篇
  1970年   22篇
  1969年   21篇
排序方式: 共有3822条查询结果,搜索用时 15 毫秒
221.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   
222.
Recently much attention has been focused on the transient behavior of the magnetopause in response to pressure pulses and southward fluctuations of the interplanetary magnetic field. We examine the motion of the magnetopause behind the foreshock and conclude that this motion is affected by foreshock pressure variations but not by fluctuations in the direction of the magnetic field. Neither magnetopause erosion nor flux transfer event occurrence is controlled by the foreshock. On the contrary, flux transfer events occur at times of steady IMF and thier quasi-periodic behavior is controlled by the magnetopause or the magnetosphere and is not driven by the external boundary conditions. Since flux transfer events are clearly due to reconnection, this observation implies that the IMF must be southward some time perhaps as long as 7 minutes before flux transfer begins.  相似文献   
223.
This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.  相似文献   
224.
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed.  相似文献   
225.
226.
Using the GPS ionospheric scintillation data at Hainan station (19.5°N, 109.1°E) in the eastern Asia equatorial regions and relevant ionospheric and geomagnetic data from July 2003 to June 2005, we investigate the response of L-band ionospheric scintillation activity over this region to different strong magnetic storm conditions (Dst < −100 nT) during the descending phase of the solar cycle. These strong storms and corresponding scintillations mainly took place in winter and summer seasons. When the main phase developed rapidly and reached the maximum near 20–21 LT (LT = UT + 8) after sunset, scintillations might occur in the following recovery phase. When the main phase maximum occurred shortly after midnight near 01–02 LT, following the strong scintillations in the pre-midnight main phase, scintillations might also occur in the post-midnight recovery phase. When the main phase maximum took place after 03 LT to the early morning hours no any scintillation could be observed in the latter of the night. Moreover, when the main phase maximum occurred during the daytime hours, scintillations could also hardly be observed in the following nighttime recovery phase, which might last until the end of recovery phase. Occasionally, scintillations also took place in the initial phase of the storm. During those scintillations associated with the nighttime magnetic storms, the height of F layer base (h’F) was evidently increased. However, the increase of F layer base height does not always cause the occurrence of scintillations, which indicates the complex interaction of various disturbance processes in ionosphere and thermosphere systems during the storms.  相似文献   
227.
We present an investigation of the influence of the 27-day solar flux variations, caused by solar rotation, on the ionosphere parameters such as the F2 layer critical frequency (foF2) and the total electron content (TEC). Our observational data were obtained with the Irkutsk Digisonde (DPS-4) located at 52.3 North and 104.3 East during the period from 2003 to 2005. In addition, we use TEC data from the Global Ionosphere Maps (GIM) based on Global Positioning System (GPS) satellites. The solar radiation flux at a wavelength of 10.7 cm (F10.7 index) is used as an index characterizing the solar activity level. A good correlation between observed ionosphere parameters and solar activity variations is found especially in autumn-to-winter season. We estimate the impact of the 27-day solar flux variations on the day-to-day variability and determine the time delay of the ionosphere response.  相似文献   
228.
Vannaroni  G.  Dobrowolny  M.  De Venuto  F. 《Space Debris》1999,1(3):159-172
Electrodynamic tethers have been recently proposed for satellite and rocket upper stage deorbiting to mitigate the debris problem at Low Earth Orbits (LEOs). The deorbiting performance of several electrodynamic tethers, where the electron collection from the ionosphere is obtained with either simple bare wires or bare wires terminated with conducting spherical collectors, was analyzed and compared. Our results indicate that the use of the spherical collectors at the positive termination of the system significantly enhances the deorbiting capabilities of the electrodynamic bare tethers.  相似文献   
229.
The orbiting solar telescope on Salyut-4 (F = 2,5 m, d = 250 mm) produces images of the Sun on the entrance slit of a stigmatic two-grating spectrograph (R1 = 1 m, N1 = 1200 lines/mm; R2 = 0.5 m, N2 = 2400 lines/mm, dispersion 16 Å/mm, spectral resolution 0,3 Å). The automatic system keeps the observed solar features on the slit of the spectrograph with an accuracy of 3–4 arc sec. The far UV-spectra (970–1400 Å) of solar flares, brightenings, flocculi and prominences were photographed and fresh coatings of mirrors were made during the flight.  相似文献   
230.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号