首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
  国内免费   3篇
航空   29篇
航天技术   12篇
航天   57篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   10篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1991年   1篇
  1985年   9篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1967年   2篇
  1963年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
41.
42.
The cyanobacterium Chroococcidiopsis, overlain by 3?mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.  相似文献   
43.
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10?cm cube-format payloads aboard the 5.5?kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650?km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48?h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.  相似文献   
44.
The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (~10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (~50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .  相似文献   
45.
Optical orbital debris spotter   总被引:1,自引:0,他引:1  
The number of man-made debris objects orbiting the Earth, or orbital debris, is alarmingly increasing, resulting in the increased probability of degradation, damage, or destruction of operating spacecraft. In part, small objects (<10 cm) in Low Earth Orbit (LEO) are of concern because they are abundant and difficult to track or even to detect on a routine basis. Due to the increasing debris population it is reasonable to assume that improved capabilities for on-orbit damage attribution, in addition to increased capabilities to detect and track small objects are needed. Here we present a sensor concept to detect small debris with sizes between approximately 1.0 and 0.01 cm in the vicinity of a host spacecraft for near real time damage attribution and characterization of dense debris fields and potentially to provide additional data to existing debris models.  相似文献   
46.
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.  相似文献   
47.
We identify a subsample of the recently detected extrasolar planets that is minimally affected by the selection effects of the Doppler detection method. With a simple analysis we quantify trends in the surface density of this subsample in the period-Msin(i) plane. A modest extrapolation of these trends puts Jupiter in the most densely occupied region of this parameter space, thus indicating that Jupiter is a typical massive planet rather than an outlier. Our analysis suggests that Jupiter is more typical than indicated by previous analyses. For example, instead of MJup mass exoplanets being twice as common as 2 MJup exoplanets, we find they are three times as common.  相似文献   
48.
Long-duration scientific balloon flights using conventional ballasting methods to compensate for daily loss of lift suffer a severe payload weight penalty. Typically, the weight of the expendable ballast approaches or exceeds the weight of the balloon and payload. This paper examines the concept of correcting for degraded lift by “gas replenishment” techniques, that is, by replacing lost helium inflatant from an on-board dewar. Appropriate equations are developed and curves are presented which demonstrate the clear theoretical superiority of the replenishment method. Design problems associated with the dewars and heat exchangers required to implement the gas replenishment concept are also discussed in detail. A series of curves is presented in which net load, dewar weight and quantity of helium required are plotted for specific balloons and float altitudes as a function of daily loss rate. The lack of relevant heat exchange data in the literature is cited as an obstacle to immediate prototype development.  相似文献   
49.
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.  相似文献   
50.
Human orientation and spatial cognition partlydepends on our ability to remember sets ofvisual landmarks and imagine their relationshipto us from a different viewpoint. We normallymake large body rotations only about a singleaxis which is aligned with gravity. However,astronauts who try to recognize environmentsrotated in 3 dimensions report that theirterrestrial ability to imagine the relativeorientation of remembered landmarks does noteasily generalize. The ability of humansubjects to learn to mentally rotate a simplearray of six objects around them was studied in1-G laboratory experiments. Subjects weretested in a cubic chamber (n = 73) and aequivalent virtual environment (n = 24),analogous to the interior of a space stationnode module. A picture of an object waspresented at the center of each wall. Subjectshad to memorize the spatial relationships amongthe six objects and learn to predict thedirection to a specific object if their bodywere in a specified 3D orientation. Percentcorrect learning curves and response times weremeasured. Most subjects achieved high accuracyfrom a given viewpoint within 20 trials,regardless of roll orientation, and learned asecond view direction with equal or greaterease. Performance of the subject group thatused a head mounted display/head tracker wasqualitatively similar to that of the secondgroup tested in a physical node simulator. Body position with respect to gravity had asignificant but minor effect on performance ofeach group, suggesting that results may alsoapply to weightless situations. A correlationwas found between task performance measures andconventional paper-and-pencil tests of fieldindependence and 2&3 dimensional figurerotation ability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号