首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3201篇
  免费   7篇
  国内免费   5篇
航空   1193篇
航天技术   1038篇
综合类   19篇
航天   963篇
  2022年   15篇
  2021年   37篇
  2019年   16篇
  2018年   127篇
  2017年   102篇
  2016年   115篇
  2015年   41篇
  2014年   111篇
  2013年   134篇
  2012年   118篇
  2011年   158篇
  2010年   127篇
  2009年   192篇
  2008年   190篇
  2007年   122篇
  2006年   74篇
  2005年   101篇
  2004年   94篇
  2003年   107篇
  2002年   83篇
  2001年   113篇
  2000年   37篇
  1999年   53篇
  1998年   61篇
  1997年   42篇
  1996年   43篇
  1995年   80篇
  1994年   61篇
  1993年   34篇
  1992年   45篇
  1991年   10篇
  1990年   19篇
  1989年   41篇
  1988年   11篇
  1987年   17篇
  1986年   16篇
  1985年   70篇
  1984年   56篇
  1983年   48篇
  1982年   42篇
  1981年   82篇
  1980年   25篇
  1979年   16篇
  1978年   14篇
  1977年   17篇
  1976年   13篇
  1975年   13篇
  1974年   11篇
  1972年   13篇
  1971年   11篇
排序方式: 共有3213条查询结果,搜索用时 15 毫秒
901.
For electro-optical TV systems, a simplified method of analysis has been developed for an automatic light control (ALC) loop preliminary ary design and performance trade-offs. With iris and shutter control mechanization incorporated, not only does the input light range increase, but the video response overshoot and settling time are reduced as well. This study shows that the appealing notion of heavily damped response is not often true, particularly in the realtime ime airto-ground surveillance of targets with varying backgrounds. In addition, with exponential and geometric feedback functions introduced, the resultant ALC dynamics are independent of the input light level. To verify the assumptions made and to demonstrate the feasibility of a working model, a complete system simulation is performed.  相似文献   
902.
Analysis of a spacecraft life support system for a Mars mission   总被引:1,自引:0,他引:1  
This report summarizes a trade study conducted as part of the Fall 2002 semester Spacecraft Life Support System Design course (ASEN 5116) in the Aerospace Engineering Sciences Department at the University of Colorado. It presents an analysis of current life support system technologies and a preliminary design of an integrated system for supporting humans during transit to and on the surface of the planet Mars. This effort was based on the NASA Design Reference Mission (DRM) for the human exploration of Mars [NASA Design Reference Mission (DRM) for Mars, Addendum 3.0, from the world wide web: http://exploration.jsc.nasa.gov/marsref/contents.html.]. The integrated design was broken into four subsystems: Water Management, Atmosphere Management, Waste Processing, and Food Supply. The process started with the derivation of top-level requirements from the DRM. Additional system and subsystem level assumptions were added where clarification was needed. Candidate technologies were identified and characterized based on performance factors. Trade studies were then conducted for each subsystem. The resulting technologies were integrated into an overall design solution using mass flow relationships. The system level trade study yielded two different configurations--one for the transit to Mars and another for the surface habitat, which included in situ resource utilization. Equivalent System Mass analyses were used to compare each design against an open-loop (non-regenerable) baseline system.  相似文献   
903.
Crewmembers play an important role in ensuring the efficiency of "crew-spacecraft" system. However, despite of the fact that crewmembers are well trained and highly motivated persons, extreme flight factors may influence negatively on their reliability, and lead to human error occurrence. Therefore, working out methods of human error prevention is very significant to increase crewmember's performance reliability. Human error can occur in the operation of systems for a number of reasons. Within the framework of the present investigation, with use the data collected during "Mir" station missions, the significant (p<0.05) positive correlation of crewmembers errors (CE) frequency with their psychophysiological state (PPS), and work and rest schedule (WRS) intensity has been revealed. Differently, the higher WRS intensity, the crewmember's PPS is worse, and CE frequency is higher. This finding has been based on substantiations of the approach to human reliability management. Its essence will consist of the following: reducing WRS intensity, we thus can improve a crewmember's PPS and, accordingly, reduce CE frequency. This approach is discussed in the paper.  相似文献   
904.
In the present work the possibility of the fractal analysis application for GRB temporal profiles was studied. We have analysed the 4B revised BATSE catalog: temporal profiles of GRB with t90 < 3 s (287 short and 100 intermediate) were studied on TTE data, a sample of 278 intermediate GRB with t90  3 s were studied on DISCSC data. An analysis of the background fractal dimension distributions obtained using TTE and DISCSC data (143 and 110 background regions, respectively), indicates that for both datasets background fractal dimensions Dbgr = 1.5 that the fractal dimension distributions obtained by using these data can be processed simultaneously. The change of the fractal index Dbgr for Poisson statistics – dominated sets with different coefficients of error in counting (up to 10) was studied and Dbgr = 1.5. The ranges of fractal dimension (0.80  D  2.25 for short and 0.85  D  2.01 for intermediate GRB) are shifted over range for theoretical fractal curve (1 < D < 2) due to the finite detector time resolution. There are four subgroups in fractal dimension distribution for short GRB (D = 1.05 ± 0.03, D = 1.31 ± 0.05, D = 1.51 ± 0.04, D = 1.90 ± 0.03) and six subgroups for intermediate one (D = 1.05 ± 0.09, D = 1.24 ± 0.08, D = 1.44 ± 0.07, D = 1.51 ± 0.08, D = 1.64 ± 0.07, D = 1.91 ± 0.1). Time profiles with fractal dimension smaller then background can be obtained by using models with many short chaotic processes in sources, for example, fireball model with shock waves. The range of fractal dimensions for the modelled temporal profiles is 1.213  D  1.400, which can correspond to subgroups of short and intermediate GRB with D = 1.31 and D = 1.24; moreover, the fractal dimension of a simulated indented event and GRB990208 are equal within the error limits for some model parameters and it is possible to obtain smooth temporal profiles with D = Dbgr.  相似文献   
905.
906.
The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.  相似文献   
907.
Speculations about the extent of life of independent origin and the potential for sustaining Earth-based life in subsurface environments on both Europa and Mars are of current and relevant interest. Theoretical modeling based on chemical energetics has demonstrated potential options for viable biochemical metabolism (metabolic pathways) in these types of environments. Also, similar environments on Earth show microbial activity. However, actual physical simulation testing of specific environments is required to confidently determine the interplay of various physical and chemical parameters on the viability of relevant metabolic pathways. This testing is required to determine the potential to sustain life in these environments on a specific scenario by scenario basis. This study examines the justification, design, and fabrication of, as well as the culture selection and screening for, a psychrophilic/halophilic/anaerobic digester. This digester is specifically designed to conform to physical testing needs of research relating to potential extent physical environments on Europa and other planetary bodies in the Solar System. The study is a long-term effort and is currently in an early phase, with only screening-level data at this time. Full study results will likely take an additional 2 years. However, researchers in electromagnetic biosignature and in situ instrument development should be aware of the study at this time, as they are invited to participate in planning for future applications of the digester facility.  相似文献   
908.
A simplified theory of the electrification of polymer films, which permits estimation of the internal electric fields of films irradiated by monoenergetic electrons simulating real streams of plasma electrons during magnetic substorms at a geosynchronous orbit, is suggested. To determine the depth behavior of the forward current and the dosage rate in the irradiated polymer, numerical calculations are made by the Monte Carlo technique. The appearance of electrostatic discharges in thin (5 m) mylar films is shown to be very probable in the orbit's shadow sector under magnetic substorm conditions.  相似文献   
909.
Perspectives of long-term space programs make it necessary to develop autonomous computer expert system for crew-members physical state control. The purpose of the work--to develop a set of objective formalizable physiological indices of working capacity suitable for reliable algorithmization of physical state control. Investigations were performed in on-earth microgravity simulation (3- and 7-day dry immersion, 6 subjects; 4-month antiorthostatic hypokinesy, 10 subjects) with volunteers' participation as well with 34 members of MIR-station expeditions during flights. Model exercise investigations were made also with 20 young male volunteers to evaluate the validity of different physical state indices. A set of indices was found which, being simple enough for measuring, performs to get satisfactory adequate evaluations of current organism physical state in long-term real or simulated microgravity. It was proved that some ergometric indices along with heart rate derivatives could reflect real working ability even better than traditional characteristics of organism energy systems state.  相似文献   
910.
The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to he compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号