首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4316篇
  免费   6篇
  国内免费   12篇
航空   2373篇
航天技术   1098篇
综合类   9篇
航天   854篇
  2019年   18篇
  2018年   189篇
  2017年   153篇
  2016年   59篇
  2015年   38篇
  2014年   55篇
  2013年   81篇
  2012年   101篇
  2011年   240篇
  2010年   212篇
  2009年   247篇
  2008年   269篇
  2007年   233篇
  2006年   63篇
  2005年   135篇
  2004年   95篇
  2003年   104篇
  2002年   52篇
  2001年   104篇
  2000年   48篇
  1999年   81篇
  1998年   95篇
  1997年   78篇
  1996年   91篇
  1995年   125篇
  1994年   101篇
  1993年   73篇
  1992年   103篇
  1991年   42篇
  1990年   37篇
  1989年   90篇
  1988年   36篇
  1987年   28篇
  1986年   32篇
  1985年   88篇
  1984年   94篇
  1983年   59篇
  1982年   82篇
  1981年   94篇
  1980年   34篇
  1979年   42篇
  1978年   34篇
  1977年   23篇
  1976年   21篇
  1975年   39篇
  1974年   24篇
  1973年   18篇
  1972年   30篇
  1969年   19篇
  1967年   20篇
排序方式: 共有4334条查询结果,搜索用时 93 毫秒
801.
Quasi-static microaccelerations are estimated for a satellite specially designed to perform space experiments in the field of microgravity. Three modes of attitude motion of the spacecraft are considered: passive gravitational orientation, orbital orientation, and semi-passive gravitational orientation. In these modes the lengthwise axis of the satellite is directed along the local vertical, while solar arrays lie in the orbit plane. The second and third modes are maintained using electromechanical executive devices: flywheel engines or gyrodynes. Estimations of residual microaccelerations are performed with the help of mathematical modeling of satellite’s attitude motion under the action of gravitational and aerodynamic moments, as well as the moment produced by the gyro system. It is demonstrated that all modes ensure rather low level of quasi-static microaccelerations on the satellite and provide for a fairly narrow region of variation for the vector of residual microacceleration. The semi-passive gravitational orientation ensures also a limited proper angular momentum of the gyro system.  相似文献   
802.
In each polar cap (PC) we mark out “old PC” observed during quiet time before the event under consideration, and “new PC” that emerges during the substorm framing the old one and expanding the PC total area. Old and new PCs are the areas for the magnetosphere old and new tail lobes, respectively. The new lobe variable magnetic flux Ψ1 is usually assumed to be active, i.e. it provides the electromagnetic energy flux (Poynting flux) ɛ′ transport from solar wind (SW) into the magnetosphere. The old lobe magnetic flux Ψ2 is supposed to be passive, i.e. it remains constant during the disturbance and does not participate in the transporting process which would mean the old PC electric field absolute screening from the convection electric field created by the magnetopause reconnection. In fact, screening is observed, but far from absolute. We suggest a model of screening and determine its quantitative characteristics in the selected superstorm. The coefficient of a screening is the β = Ψ202, where Ψ02 = const is open magnetic flux through the old PC measured prior to the substorm, and Ψ2 is variable magnetic flux through the same area measured during the substorm. We consider three various regimes of disturbance. In each, the coefficient β decreased during the loading phase and increased at the unloading phase, but the rates and amplitudes of variations exhibited a strong dependence on the regime. We interpreted decrease in β as a result of involving the old PC magnetic flux Ψ2, which was considered to be constant earlier, in the Poynting flux ɛ′ transport process from solar wind into the magnetosphere. Transport process weakening at the subsequent unloading phase creates increase in β. Estimates showed that coefficient β during each regime and the computed Poynting flux ɛ′ varied manifolds. In general, unlike the existing substorm conception, the new scenario describes an unknown earlier of tail lobe activation process during a substorm growth phase that effectively increases the accumulated tail energy for the expansion and recovery phases.  相似文献   
803.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   
804.
An integral method is proposed for calculating a jet propagating from the turbofan engine thrust reverser and interacting with a stream formed as a result of the after-landing aircraft run. The calculation results for the PS-90 engine are presented. The calculation data obtained show that the mathematical model developed adequately describes a qualitative pattern of main parameter variation in the sector jet propagating in a stream.  相似文献   
805.
The application of the optimized dispersion relation preserving scheme (DRP-scheme) in combination with the explicit optimized two-layer Runge-Kutta scheme is presented to solve a system of one-dimensional and quasi-one-dimensional Euler equations using as an example the solution of four test problems, namely, discontinuity disintegration in a tube (Sod’s problem); transfer of the lowamplitude Gaussian pulse; acoustic wave propagation through the transonic nozzle; acoustic wave-shock interaction. Also given are the comparison of the calculation results using different schemes: DRP, CABARET, CE-SE and the standard Lax-Wendroff schemes as well as the solutions obtained with the use of software packages.  相似文献   
806.
The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement.  相似文献   
807.
Based on the results of plasma and magnetic measurements at three different points of the heliosphere and telescopic observations of the Sun from these points we study simultaneously high-speed streams (HSS) of the solar wind (SW) near the Earths’s orbit and coronal holes (CH) that have generated them. The data from spacecraft STEREO-A, STEREO-B, ACE, and SOHO are used together with ground-based observations from March 2007 to May 2008. In this period there existed HSS whose sources represented CH of various polarity, geometry, and location relative to the heliographic and heliomagnetic equators. Dependence of SW parameters on mutual positions of spacecraft with respect to CH and heliospheric current sheet, and also on heliolatitude and geometry of the CH is revealed. A difference of more than 5° in locations of spacecraft with respect to the heliospheric current sheet in November 2007 allowed us to discover a heliolatitude velocity gradient of the SW streams between the STEREO-A and STEREO-B spacecraft. On the average this gradient at that time was equal to 20 km/s per degree. Substantial variations in SW streams associated with variations of the HSS SW sources during a few hours or days were also observed. This variability makes it difficult to use the data of spacecraft STEREO-B for sufficiently accurate prediction of SW properties in the near-Earth space by the method of simple advanced ti me shift due to heliolongitude difference between a spacecraft and the Earth even in solar activity minimum.  相似文献   
808.
Historically, colony-forming units as determined by plate cultures have been the standard unit for microbiological analysis of environmental samples, medical diagnostics, and products for human use. However, the time and materials required make plate cultures expensive and potentially hazardous in the closed environments of future NASA missions aboard the International Space Station and missions to other Solar System targets. The Limulus Amebocyte Lysate (LAL) assay is an established method for ensuring the sterility and cleanliness of samples in the meat-packing and pharmaceutical industries. Each of these industries has verified numerical requirements for the correct interpretation of results from this assay. The LAL assay is a rapid, point-of-use, verified assay that has already been approved by NASA Planetary Protection as an alternate, molecular method for the examination of outbound spacecraft. We hypothesize that standards for molecular techniques, similar to those used by the pharmaceutical and meat-packing industries, need to be set by space agencies to ensure accurate data interpretation and subsequent decision making. In support of this idea, we present research that has been conducted to relate the LAL assay to plate cultures, and we recommend values obtained from these investigations that could assist in interpretation and analysis of data obtained from the LAL assay.  相似文献   
809.
Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.  相似文献   
810.
Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling $k_{\perp}^{-5/3}$ for the perpendicular cascade and $k_{\|}^{-2}$ for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a ?3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to ?2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by $\sim k_{\perp}^{-\alpha}\exp(-k_{\perp}\ell_{d})$ , with α?8/3 and the dissipation scale ? d close to the electron Larmor radius ? d ?ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号