首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3157篇
  免费   9篇
  国内免费   14篇
航空   1673篇
航天技术   1083篇
综合类   9篇
航天   415篇
  2018年   37篇
  2017年   21篇
  2016年   22篇
  2014年   55篇
  2013年   79篇
  2012年   60篇
  2011年   105篇
  2010年   82篇
  2009年   117篇
  2008年   176篇
  2007年   90篇
  2006年   60篇
  2005年   77篇
  2004年   78篇
  2003年   100篇
  2002年   52篇
  2001年   99篇
  2000年   48篇
  1999年   79篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   124篇
  1994年   98篇
  1993年   66篇
  1992年   101篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   33篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1968年   16篇
  1967年   20篇
  1966年   16篇
排序方式: 共有3180条查询结果,搜索用时 15 毫秒
311.
Space-related laboratory experiments can play an important role as a complement to observations and active experiments in the magnetosphere. Excluding laboratory experiments for mere developing or testing of techniques for space experiments, we may distinguish between two major types: (1) partial scale model experiments and (2) experiments for clarifying basic plasma physical processes known or expected to be important in the magnetosphere (but without the ambition to simulate actual space configurations). The limitations and potentialities of both types are discussed and examples of experiments are given. It is concluded that there should be an increasing need for the experiments of the second type. In particular, they are needed for the clarification of the response of a thin plasma to electric fields and its ability to carry electric currents. This encompasses such key questions as the nature and role of anomalous resistivity (and electron runaway in its presence), the possible formation of double layers (and the acceleration processes associated with them) and rapid dissipation of magnetic-field energy.  相似文献   
312.
313.
Previous attempts to identify aircraft stability and control derivatives from flight test data, using three-degrees-of-freedom (3-DOF) longitudinal or lateral-directional perturbation equation-of-motion models, suffer from the disadvantage that the coupling between the longitudinal and lateral-directional dynamics has been ignored. In this paper, the identification of aircraft stability parameters is accomplished using a more accurate 6-DOF model which includes this coupling. Hierarchical system identification theory is used to reduce the computational effort involved. The 6-DOF system of equations is first decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and the other for the lateral-directional dynamics. The two subsystem parameter identification processes are then coordinated in such a way that the overall system parameter identification problem is solved. Next, a six-subsystem decomposition is considered. Computational considerations and comparison with the unhierarchically structured problem are presented.  相似文献   
314.
Linear FM Signal Formats for Beacon and Communication Systems   总被引:2,自引:0,他引:2  
This paper examines the capabilities of the class of linear FM spread-spectrum signals within the context of potential communications systems usage in order to establish some performance criteria and bounds that permit comparison with other spread-spectrum formats. A systematic basis is provided for parameter selection for this class of signals by examining the interaction a mong the frequency-modulation indices, time-bandwidth product, and cross-talk criteria that determine the number of effective linear FM signals (or channels) that can be used within the constraints of a bounded time-frequency region. A general expression is derived relating N, the number of useful signals, R2, a cross-talk parameter, ToWo, the mean time-bandwidth product, and ?max and ?min, the maximum and minimum FM rates of the signal set. Canonic signal processor structures are described for ensembles of linear FM signals that have either constant duration or constant bandwidth. It is then shown that the signal modulation format can be modified in accordance with classical paired-echo theory to expand the utility of this class of signals in both synchronous and nonsynchronous operations to yield the equivalent of time-division and code multiplexing. Possible applications for this signal format are discussed.  相似文献   
315.
316.
A new concept in synthetic aperture radar, called SASAR, which uses a segmented aperture, is described. Use of the segmented aperture allows appreciable extra receiving antenna gain to be realized. Each subarray of the receive antenna is equal in length to the transmit antenna; the system performance is increased approximately by a factor equal to the number of subarrays. To allow array combination of the subarray signal outputs requires a phase-shift factor (varying with azimuth) to be applied to each subarray signal. A digital implementation of this preprocessor is sketched out; it uses a push-down storage stack to store the range histories for a synthetic aperture from each subarray. Appropriate phase shifts are added to the stacks and a sum of stack values then provides the combined output range history sequence. Possibilities of using analog delay lines for preprocessing are also discussed. Pattern errors due to subarray size and receive array near field are examined and constraints are given.  相似文献   
317.
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface.  相似文献   
318.
319.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
320.
A major problem with operations of lifting reentry vehicle having an aft center-of-gravity location due to large engine mass at the rear is the required hypersonic trim to fight the desired trajectory. This condition is most severe for lifting maneuvers. As a first step toward analyzing this problem, this paper considers the lift requirement for some basic maneuvers in the plane of a great circle. Considerations are given to optimal lift control for achieving the maximization of either the final altitude, speed or range. For the maximum-range problem, phugoid oscillation along an optimal trajectory is less severe as compared to a glide with maximum lift-to-drag ratio. An explicit formula for the number of oscillations for an entry from orbital speed is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号