全文获取类型
收费全文 | 3206篇 |
免费 | 8篇 |
国内免费 | 9篇 |
专业分类
航空 | 1684篇 |
航天技术 | 1101篇 |
综合类 | 9篇 |
航天 | 429篇 |
出版年
2021年 | 18篇 |
2019年 | 18篇 |
2018年 | 42篇 |
2017年 | 20篇 |
2016年 | 24篇 |
2014年 | 54篇 |
2013年 | 83篇 |
2012年 | 62篇 |
2011年 | 109篇 |
2010年 | 83篇 |
2009年 | 114篇 |
2008年 | 177篇 |
2007年 | 92篇 |
2006年 | 60篇 |
2005年 | 80篇 |
2004年 | 78篇 |
2003年 | 102篇 |
2002年 | 53篇 |
2001年 | 99篇 |
2000年 | 48篇 |
1999年 | 80篇 |
1998年 | 93篇 |
1997年 | 73篇 |
1996年 | 91篇 |
1995年 | 125篇 |
1994年 | 98篇 |
1993年 | 66篇 |
1992年 | 102篇 |
1991年 | 42篇 |
1990年 | 36篇 |
1989年 | 87篇 |
1988年 | 33篇 |
1987年 | 28篇 |
1986年 | 32篇 |
1985年 | 88篇 |
1984年 | 95篇 |
1983年 | 61篇 |
1982年 | 83篇 |
1981年 | 96篇 |
1980年 | 34篇 |
1979年 | 42篇 |
1978年 | 32篇 |
1977年 | 22篇 |
1976年 | 21篇 |
1975年 | 37篇 |
1974年 | 24篇 |
1973年 | 18篇 |
1972年 | 29篇 |
1969年 | 17篇 |
1967年 | 20篇 |
排序方式: 共有3223条查询结果,搜索用时 0 毫秒
271.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers. 相似文献
272.
Heilbronn L Frankel K Holabird K Zeitlin C McMahan MA Rathbun W Cronqvist M Gong W Madey R Htun M Elaasar M Anderson BD Baldwin AR Jiang J Keane D Scott A Shao Y Watson JW Zhang WM Galonsky A Ronningen R Zecher P Kruse J Wang J Cary R 《Acta Astronautica》1998,42(1-8):363-373
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations. 相似文献
273.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved. 相似文献
274.
Fernández-Remolar DC Gómez F Prieto-Ballesteros O Schelble RT Rodríguez N Amils R 《Astrobiology》2008,8(1):157-173
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere. 相似文献
275.
These studies were designed and coordinated to evaluate specific aspects of man's immunologic and hematologic systems which might be altered by or respond to the space flight environment. The biochemical functions investigated included cytogenetic damage to blood cells, immune resistance to disease, regulation of plasma and red cell volumes, metabolic processes of the red blood cell, and physical chemical aspects of red blood cell functions. Only minor changes were observed in the functional capacity of erythrocytes as determined by measuring the concentrations of selected intracellular enzymes and metabolites. Tests of red cell osmotic regulation indicated some elevation in the activity of the metabolic dependent Na-K pump, with no significant alterations in the cellular Na and K concentrations or osmotic fragility. A transient shift in red cell specific-gravity profile was observed on recovery, possibly related to changes in cellular water content. Measurements of hemoconcentration (hematocrit, hemoglobin concentration, red cell count) indicated significant fluctuations postflight, reflecting observed changes in red cell mass and plasma volume. There was no apparent reticulocytosis during the 18 days following the first manned Skylab mission in spite of a significant loss in red cell mass. However, the reticulocyte count and index did increase significantly 5 to 7 days after completion of the second, longer duration, flight. There were no significant changes in either the while blood cell count or differential. However, the capacity of lymphocytes to respond to an in vitro mitogenic challenge was repressed postflight, and appeared to be related to mission duration. The cause of this repression is unknown at this time. Only minor differences were observed in plasma protein patterns. In the second mission there were changes in the proteins involved in the coagulation process which suggested a hypercoagulative condition. 相似文献
276.
In examining alternative space-development models, one observes that Heinlein postulated the first Moon flight as the outcome of the focused action of an individual – building upon an ample commercial aerospace transportation infrastructure. The same technological basis and entrepreneurial drive would then sustain a fast human and economic expansion on three new planets. Instead, historically, humans reached the Moon thanks to a “Faustian bargain” between astronautical developers and governments. This approach brought the early Apollo triumphs, but it also created the presumption of this method as the sole one for enabling space development. Eventually, the application of this paradigm caused the decline of the astronautical endeavor. Thus, just as conventional methods became unable to sustain the astronautical endeavor, space development appeared as vital, e.g., to satisfy the people?s basic needs (metabolic resources, energy, materials, and space), as shown elsewhere. Such an endeavor must grow from actions generating new wealth through commercial activities to become self-supporting. Acquisition and distribution of multiform space resources call, however, for a sound ethical environment, as predatory governments can easily forfeit those resources. 相似文献
277.
ESA astronauts' ISS flight opportunities are considered as a vital source to meet the utilisation, operation and political objectives that Europe has established for participating in the International Space Station programme. Recent internal ESA assessments have demonstrated that a rate of three flights per year for European Astronauts should be maintained as a minimum objective. The current flight rate is lower than this. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, ESA is developing the conditions for the establishment of commercially based human spaceflights with the financial support of both ESA and the private sector or, in the future, only the latter. ESA is working in a Partnership with the space industry to facilitate the implementation of such projects and support customers with a range of end-to-end commercial services. The opportunities and challenges of a "commercial human spaceflight", involving a member of the European Astronaut Corps, or a privately employed flight participant, are discussed here. 相似文献
278.
Preservation of microbial lipids in geothermal sinters 总被引:1,自引:0,他引:1
Lipid biomarkers are widely used to study the earliest life on Earth and have been invoked as potential astrobiological markers, but few studies have assessed their survival and persistence in geothermal settings. Here, we investigate lipid preservation in active and inactive geothermal silica sinters, with ages of up to 900 years, from Champagne Pool, Waiotapu, New Zealand. Analyses revealed a wide range of bacterial biomarkers, including free and bound fatty acids, 1,2-di-O-alkylglycerols (diethers), and various hopanoids. Dominant archaeal lipids include archaeol and glycerol dialkyl glycerol tetraethers (GDGTs). The predominance of generally similar biomarker groups in all sinters suggests a stable microbial community throughout Champagne Pool's history and indicates that incorporated lipids can be well preserved. Moreover, subtle differences in lipid distributions suggest that past changes in environmental conditions can be elucidated. In this case, higher archaeol abundances relative to the bacterial diethers, a greater proportion of cyclic GDGTs, the high average chain length of the bacterial diethers, and greater concentrations of hopanoic acids in the older sinters all suggest hotter conditions at Champagne Pool in the past. 相似文献
279.
Klein MJ Gulkis S Wilck HC Olsen ET Garyantes MF Burns DJ Asmar PR Brady RB Deich WT Renzetti NA 《Acta Astronautica》1992,26(3-4):177-184
280.
For the foreseeable future, the search for evidence of past life in rocks acquired from other planets will be constrained by the amount of sample available and by the fidelity of preservation of any fossils present. What amount of rock is needed to establish the existence of past life? To address this question, we studied a minute amount of rock collected from cherty dolomites of the Proterozoic Buxa Formation in the metamorphically altered tectonically active northeastern Himalaya. In particular, we investigated 2 small petrographic thin sections-one from each of 2 bedded chert horizons exposed in the Ranjit River stratigraphic section northwest of Rishi, Sikkim, India-that together comprise an area of approximately 5 cm(2) (about the size of a US postage stamp) and have a total rock weight of approximately 0.1 g. Optical microscopy, confocal laser scanning microscopy, and Raman spectroscopy and imagery demonstrate that each of the thin sections contains a rich assemblage of 3-dimensionally permineralized organic-walled microfossils. This study, the first report of Proterozoic microfossils in units of the Ranjit tectonic window, demonstrates that firm evidence of early life can be adduced from even a minuscule amount of fossil-bearing ancient rock. 相似文献