Cyanobacteria are capable of tolerating environmental extremes. To survive in extreme environments, cyanobacteria have developed the capability to adapt to a variety of stresses. For example, cyanobacteria have adopted a number of strategies with which to survive UV stress, including expression of UV-screening pigments and antioxidant systems. We have previously shown that several antioxidants are significantly expressed in Nostoc sp. by UVB irradiation. We report here that the content of UV-responsive biomarkers such as β-carotene and scytonemin can be easily detected by Fourier transform Raman spectroscopy with use of a small sample size and that the content of β-carotene is dependant on the UVB intensity and exposure time. Our results indicate that Raman spectroscopy may be a helpful tool to analyze UV-protective molecules of cyanobacterium in astrobiological studies without access to large sample sizes and complicated extractions, which are needed by other analytical techniques such as high-performance liquid chromatography and mass spectrometry. 相似文献
On the basis of the experience gained during the previous french-russian missions on board MIR about the adaptation processes of the cardio-vascular system, a new laboratory has been designed. The objective of this “PHYSIOLAB” is to have a better understanding of the mechanisms underlying the changes in the cardio-vascular system, with a special emphasis on the phenomenon of cardio-vascular deconditioning after landing.
Beyond these scientific objectives, it is also intended to use PHYSIOLAB to help in the medical monitoring on-board MIR, during functional tests such as LBNP.
PHYSIOLAB will be set up in MIR by the French cosmonaut during the next french-russian CASSIOPEE mission in 1996. Its architecture is based on a central unit, which controls the experimental protocols, records the results and provides an interface for transmission to the ground via telemetry. Different specific modules are used for the acquisition of various physiological parameters.
This PHYSIOLAB under development for the CASSIOPEE mission should evolve towards a more ambitious laboratory, whose definition would take into account the results obtained with the first version of PHYSIOLAB. This “second generation” laboratory should be developed in the frame of wide international cooperation. 相似文献
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars. 相似文献
Titan, the largest satellite of Saturn, has a dense N2-CH4 atmosphere rich in organic compounds, both in gas and in aerosol phases. Its surface is probably covered by oceans of liquid methane-ethane mixtures, with many dissolved organics. This quasi planet appears as a natural laboratory to study chemical evolution toward complex organic systems in a planetary environment over a long time scale. With the Cassini-Huygens mission NASA and ESA will jointly send an orbiter (Cassini) around Saturn and a probe (Huygens) in the atmosphere of Titan. This mission, currently planned to be launched in 1996-1997 for a Saturn - Titan arrival in 2004, offers a unique opportunity to study in detail extra-terrestrial organic processes. Consequently, it has important implications in the field of exobiology and the origins of life. 相似文献