首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6126篇
  免费   48篇
  国内免费   36篇
航空   3071篇
航天技术   2106篇
综合类   78篇
航天   955篇
  2021年   50篇
  2018年   85篇
  2017年   71篇
  2016年   47篇
  2015年   46篇
  2014年   116篇
  2013年   154篇
  2012年   136篇
  2011年   242篇
  2010年   177篇
  2009年   226篇
  2008年   324篇
  2007年   181篇
  2006年   156篇
  2005年   172篇
  2004年   139篇
  2003年   189篇
  2002年   124篇
  2001年   181篇
  2000年   122篇
  1999年   162篇
  1998年   172篇
  1997年   146篇
  1996年   154篇
  1995年   199篇
  1994年   180篇
  1993年   114篇
  1992年   154篇
  1991年   76篇
  1990年   69篇
  1989年   146篇
  1988年   64篇
  1987年   52篇
  1986年   59篇
  1985年   189篇
  1984年   163篇
  1983年   118篇
  1982年   128篇
  1981年   181篇
  1980年   58篇
  1979年   64篇
  1978年   58篇
  1977年   41篇
  1976年   39篇
  1975年   65篇
  1974年   39篇
  1972年   56篇
  1971年   37篇
  1969年   38篇
  1967年   41篇
排序方式: 共有6210条查询结果,搜索用时 62 毫秒
241.
242.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   
243.
The problem with aviation COTS   总被引:1,自引:0,他引:1  
Commercial Off the Shelf (COTS) has become a byword for acquisition reform, but there are significant risks associated with the use of COTS products in military systems. These risks are especially acute for aviation systems. This paper explains how COTS can negatively affect military acquisitions and gives ideas on how to plan and resolve COTS caused problems  相似文献   
244.
Frequency measurements made at a moving platform can be used to locate an emitter. An error ellipsoid analysis is used to compare the performance under three levels of a priori information on the emitter's altitude: (1) no knowledge, (2) terrain data, and (3) complete knowledge of the emitter's altitude. The analysis is performed for two simple platform paths that provide frequency measurements that are approximately time reversed versions of one another. When no a priori knowledge is available there is little difference between the performance when the platform maneuvers on a concave circular path or on a convex circular path and the performance depends very Little on the platform altitude. However, when some a priori altitude information is available the performance is markedly different on the two paths and is highly dependent on the platform altitude. Thus, this analysis provides the unexpected result that for seemingly similar platform paths, the performance can vary markedly when the emitter altitude is assumed known. Also, an interesting result is that for some cases it is possible to achieve better x-y accuracy when using terrain data than when the emitter's z location is known, because the terrain data provides terrain slope information. These cases are characterized in terms of the terrain slope at the emitter  相似文献   
245.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
246.
Ulysses plasma measurement from 1.15 to 5.31 AU and from S6.4° to S48.3° solar latitude are used to assess the trends in the solar wind thermal electron temperature and anisotropy. Improved spacecraft potential corrections and data products have been incorporated. The radial temperature gradient is steeper than in previous determinations, but flatter than adiabatic. When normalized to 1 AU, temperature decrease with increasing latitude. Little change in the average thermal anisotropy has been seen during the mission.  相似文献   
247.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   
248.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   
249.
Human computational vision models that attempt to account for the dynamic perception of egomotion and relative depth typically assume a common three-stage process: first, compute the optical flow field based on the dynamically changing image; second, estimate the egomotion states based on the flow; and third, estimate the relative depth/shape based on the egomotion states and possibly on a model of the viewed surface. We propose a model more in line with recent work in human vision, employing multistage integration. Here the dynamic image is first processed to generate spatial and temporal image gradients that drive a mutually interconnected state estimator and depth/shape estimator. The state estimator uses the image gradient information in combination with a depth/shape estimate of the viewed surface and an assumed model of the viewer's dynamics to generate current state estimates; in tandem, the depth/shape estimator uses the image gradient information in combination with the viewer's state estimate and assumed shape model to generate current depth/shape estimates. In this paper, we describe the model and compare model predictions with empirical data.  相似文献   
250.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号