首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
  国内免费   2篇
航空   61篇
航天技术   12篇
综合类   1篇
航天   14篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   10篇
  2015年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
41.
42.
43.
Preface     
  相似文献   
44.
The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120° apart around the Juno spacecraft to measure complete electron distributions from ~0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ~5 eV to ~50 keV over an instantaneous field of view of 270°×90° in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with mm~2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.  相似文献   
45.
In support of the InSight mission in which two instruments (the SEIS seismometer and the \(\mbox{HP}^{3}\) heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the \(\sim1.3~\mbox{Mg/m}^{3}\) density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing.  相似文献   
46.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W.  相似文献   
47.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   
48.
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement \(>97~\%\) of the time and is, therefore, not expected to endanger the InSight mission objectives.  相似文献   
49.
The announcement last summer of the establishment of the U. S. Navy Space Command, and its subsequent activation at Dahlgren, Va., in October 1983, may have come as a surprise to some. This, however, was the latest of a series of actions taken by the Department of the Navy over the last several years to consolidate the Navy's space efforts. In fact, since the beginning of the Space Age, the Navy has been interested in space and involved in space-related activities. Its contributions in space science and technology have been significant. Driven by a realization that space assets are exceptionally well matched to its global mission, the Navy has become a major user of space. Primary areas of current activity include command, control, and communication and navigation and collection of environmental information. The Navy's operational use of space systems, the nature of the evolving Soviet threat (both air and space) directed in a large measure at U. S. naval targets, and the recent advances made in space technology, all argue for an increased level of Navy involvement in future Department of Defense space activities to secure Navy interests. As viewed by Navy decision-makers, this increased level of involvement will be selective in nature, emphasizing space research and development and operations that are considered vital to Navy interests.  相似文献   
50.
Space Science Reviews - We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号