首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
  国内免费   2篇
航空   45篇
航天技术   11篇
综合类   1篇
航天   15篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   10篇
  2015年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有72条查询结果,搜索用时 171 毫秒
61.
We present a methodology that provides traceable analysis from stakeholders’ needs to prioritized goals for human space exploration. We first construct a network to represent the stakeholder environment of NASA’s human exploration efforts, then assess the intensity of these stakeholder needs, and build a numerical model to represent the flow of value in the network. The underlying principle is that as a rational actor, NASA should invest its resources in creating outputs that provide the greatest return of support to it. We showcase this methodology, seeded with test data, the results of which suggests that the most important outputs of the exploration endeavor are human and robotic exploration firsts and science data, but also include funding to the science community, providing interesting NASA mission event content directly to the public and to the media, and commercial contracts. We propose that goals should be structured to ensure these value outputs, and be written in such as way as to convey the subsequent creation of value in the network. The goals derived in this manner suggest that the majority of the value created by human space exploration derives from campaign level design, rather than from operation of transportation elements. There would be higher assurance that these value outputs would be delivered if a responsible official or entity within the exploration function was specifically tasked with ensuring stakeholder value creation.  相似文献   
62.
Fegley  Bruce 《Space Science Reviews》1999,90(1-2):239-252
Chemical and physical processes in the outer solar nebula are reviewed. It is argued that the outer nebula was a chemically active environment with UV photochemistry and ion-molecule chemistry in its low density regions and grain-catalyzed chemistry in Jovian protoplanetary subnebulae. Presolar material was altered to greater or lesser extent by these spatially and temporally variable processes, which mimic many features of interstellar chemistry. Experiments, models, and observations are recommended to address the questions of presolar versus nebular dominance in the outer solar nebula and of how to distinguish interstellar and nebular sources of cometary volatiles. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
63.
64.
65.
Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.  相似文献   
66.
The first, heroic age of space exploration was drived by national rivalry between the USA and USSR. There have indeed been recent achievements, but as the Cold War ends the superpowers are turning their attention to domestic issues and the prospect looms of a prolonged hiatus in space exploration. The only way forward is through international cooperation, but this will never happen without a serious investment of political will. A well-planned, long-term strategy for the exploration of Mars could provide the necessary focus.  相似文献   
67.
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).  相似文献   
68.
69.
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12° field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy.  相似文献   
70.
The Energetic Particle and Plasma Spectrometer (EPPS) package on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury is composed of two sensors, the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS). EPS measures the energy, angular, and compositional distributions of the high-energy components of the in situ electrons (>20 keV) and ions (>5 keV/nucleon), while FIPS measures the energy, angular, and compositional distributions of the low-energy components of the ion distributions (<50 eV/charge to 20 keV/charge). Both EPS and FIPS have very small footprints, and their combined mass (∼3 kg) is significantly lower than that of comparable instruments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号