全文获取类型
收费全文 | 2277篇 |
免费 | 7篇 |
国内免费 | 3篇 |
专业分类
航空 | 1227篇 |
航天技术 | 831篇 |
综合类 | 13篇 |
航天 | 216篇 |
出版年
2018年 | 25篇 |
2017年 | 23篇 |
2014年 | 24篇 |
2013年 | 48篇 |
2012年 | 28篇 |
2011年 | 59篇 |
2010年 | 47篇 |
2009年 | 57篇 |
2008年 | 126篇 |
2007年 | 38篇 |
2006年 | 32篇 |
2005年 | 46篇 |
2004年 | 69篇 |
2003年 | 72篇 |
2002年 | 37篇 |
2001年 | 55篇 |
2000年 | 49篇 |
1999年 | 27篇 |
1998年 | 75篇 |
1997年 | 53篇 |
1996年 | 62篇 |
1995年 | 69篇 |
1994年 | 85篇 |
1993年 | 51篇 |
1992年 | 69篇 |
1991年 | 29篇 |
1990年 | 33篇 |
1989年 | 70篇 |
1988年 | 24篇 |
1987年 | 29篇 |
1986年 | 51篇 |
1985年 | 87篇 |
1984年 | 54篇 |
1983年 | 60篇 |
1982年 | 57篇 |
1981年 | 68篇 |
1980年 | 34篇 |
1979年 | 27篇 |
1978年 | 25篇 |
1977年 | 24篇 |
1975年 | 24篇 |
1974年 | 24篇 |
1973年 | 24篇 |
1972年 | 21篇 |
1971年 | 31篇 |
1970年 | 17篇 |
1969年 | 25篇 |
1968年 | 18篇 |
1967年 | 20篇 |
1966年 | 19篇 |
排序方式: 共有2287条查询结果,搜索用时 31 毫秒
71.
S. B. Mende H. U. Frey K. Rider C. Chou S. E. Harris O. H. W. Siegmund S. L. England C. Wilkins W. Craig T. J. Immel P. Turin N. Darling J. Loicq P. Blain E. Syrstad B. Thompson R. Burt J. Champagne P. Sevilla S. Ellis 《Space Science Reviews》2017,212(1-2):655-696
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft. 相似文献
72.
It is well established that the prolonged and thorough mixing of numerous nucleosynthetic components that constitutes the matter in the solar nebula resulted in an essential isotopic homogeneity of the solar system material. This may or may not be true for the short-lived radionuclides which were injected into or formed within the solar nebula just prior to or during solar system formation. Distinguishing between their heterogeneous or homogeneous distribution is important because the short- lived radionuclides are now widely used for the relative chronology of various objects and processes in the early solar system and as constraints for models of nucleosynthesis. The recent studies of the 53Mn-53Cr isotope system (half life of 53Mn is 3.7 Ma) in various solar system objects have shown that the relative abundance of radiogenic 53Cr is consistent with essentially homogeneous distribution of 53Mn in the asteroid belt. Thus, the relative 53Mn-53Cr chronometer can be directly used for dating samples which originated in the asteroid belt. Importantly, however, all meteorite groups studied so far indicate a clear excess of 53Cr as compared to Earth and to a lunar sample, which exhibits also a terrestrial 53Cr/52Cr ratio. The results from the Martian (SNC) meteorites show that their 53Cr excesses are less than half of those found in the asteroid belt bodies. Thus, the characteristic 53Cr/52Cr ratio of Mars is intermediate between that of the Earth-Moon system and those of the other meteorites. If these 53Cr variations are viewed as a function of the heliocentric distance, the radial dependence of the relative abundances of radiogenic 53Cr is indicated. This observed gradient can be explained by either an early, volatility controlled, Mn/Cr fractionation within the nebula or by an initial radial heterogeneous distribution of 53Mn. Although model calculations of the Mn/Cr ratios in the bulk terrestrial planets seem to be inconsistent with the volatility driven scenario, the precision of these calculations is inadequate for eliminating this possibility. In contrast, recent studies of the 53Mn-53Cr system in the enstatite chondrites indicate that, while their bulk Mn/Cr ratios are essentially the same as in ordinary chondrites, the 53Cr excess in bulk enstatite chondrites is three times lower than that in the bulk ordinary chondrites. This difference cannot be explained by a Mn/Cr fractionation and, thus, strongly suggests that a radial heterogeneous distribution of 53Mn must have existed in at least the early inner solar system. Using the observed gradient and the 53Cr/52Cr ratio of the bulk enstatite chondrites, their parent body(ies) formed at ∼1.4 AU or somewhat closer to the Sun. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
73.
Highly mobile space suit material optimization 总被引:1,自引:0,他引:1
This paper discusses the factors that control the flexibility of fabric space suit elements by examining a bending model of a pressurized fabric tube. Results from the model are used to evaluate the current direction in highly mobile EVA glove research and suggest that changes are necessary in the suit and glove fabric selection methodology. 相似文献
74.
Thomas W. Becker 《Space Policy》1993,9(1)
The subject of space education is attracting increasing attention, but there are diverging views as to how it should be approached, as can be seen from the following two reports of Education Remote Sensing '92, a conference held in Cardiff, Wales, 28–30 June 1992. 相似文献
75.
Nonbinary m -sequences (maximal length sequences) for spread-spectrum communication systems that have a two-level autocorrelation are presented. The autocorrelation function of an m -sequence over the Galois field of q elements GF(q ), where q =p k, for p a prime and k an integer greater than 1, is developed and shown to be bilevel when the elements of GF(q ) are expressed as elements of a vector space over the p th roots of unity 相似文献
76.
Stark L. Tendick F. Kim W. Anderson R. Hisey M. Mills B. Matsunaga K. An Nguyen Ramos C. Tyler M. Zahalak G. Amick M. Baker B. Brown N. Brown T. Chang J. Jyh-Horng Chen Chik J. Cohen D. Cox D. Dubey J. Ellis K. Engdahl E. Frederickson C. Halamka J. Hauser R. Jacobs J. Lee C. Lee D. Liu A. Ninomiya R. Rudolph J. Schafer S. Schendel E. So G. Takeda M. Tam L. Thompson M. Wood E. Woodruff T. 《IEEE transactions on aerospace and electronic systems》1988,24(5):542-551
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA 相似文献
77.
Nearly optimum quantization levels for multileveled quantizers in radar receivers and distributed-detection are calculated for preassigned false-alarm probability Q 0 by maximizing the detection probability Q d after replacing both Q 0 and (1-Q d) by the saddlepoint approximations. Narrowband signals of random phase and with both fixed and Rayleigh-fading amplitudes in Gaussian noise are treated, and the loss in signal detectability incurred by quantization is estimated 相似文献
78.
2001 Mars Odyssey Mission Summary 总被引:1,自引:0,他引:1
Saunders R.S. Arvidson R.E. Badhwar G.D. Boynton W.V. Christensen P.R. Cucinotta F.A. Feldman W.C. Gibbs R.G. Kloss C. Landano M.R. Mase R.A. McSmith G.W. Meyer M.A. Mitrofanov I.G. Pace G.D. Plaut J.J. Sidney W.P. Spencer D.A. Thompson T.W. Zeitlin C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months. 相似文献
79.
R. Srama T. J. Ahrens N. Altobelli S. Auer J. G. Bradley M. Burton V. V. Dikarev T. Economou H. Fechtig M. Görlich M. Grande A. Graps E. Grün O. Havnes S. Helfert M. Horanyi E. Igenbergs E. K. Jessberger T. V. Johnson S. Kempf A. V. Krivov H. Krüger A. Mocker-Ahlreep G. Moragas-Klostermeyer P. Lamy M. Landgraf D. Linkert G. Linkert F. Lura J. A. M. McDonnell D. Möhlmann G. E. Morfill M. Müller M. Roy G. Schäfer G. Schlotzhauer G. H. Schwehm F. Spahn M. Stübig J. Svestka V. Tschernjawski A. J. Tuzzolino R. Wäsch H. A. Zook 《Space Science Reviews》2004,114(1-4):465-518
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date. 相似文献
80.
Structural health management technologies for inflatable/deployable structures: Integrating sensing and self-healing 总被引:1,自引:0,他引:1
Erik J. Brandon Max Vozoff Elizabeth A. Kolawa George F. Studor Frankel Lyons Michael W. Keller Brett Beiermann Scott R. White Nancy R. Sottos Mark A. Curry David L. Banks Robert Brocato Lisong Zhou Soyoun Jung Thomas N. Jackson Kevin Champaigne 《Acta Astronautica》2011,68(7-8):883-903
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed. 相似文献