首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2343篇
  免费   16篇
  国内免费   10篇
航空   1268篇
航天技术   845篇
综合类   22篇
航天   234篇
  2018年   30篇
  2017年   25篇
  2016年   18篇
  2014年   29篇
  2013年   56篇
  2012年   32篇
  2011年   64篇
  2010年   50篇
  2009年   62篇
  2008年   129篇
  2007年   38篇
  2006年   32篇
  2005年   47篇
  2004年   69篇
  2003年   78篇
  2002年   46篇
  2001年   56篇
  2000年   49篇
  1999年   27篇
  1998年   76篇
  1997年   53篇
  1996年   62篇
  1995年   69篇
  1994年   85篇
  1993年   51篇
  1992年   69篇
  1991年   29篇
  1990年   33篇
  1989年   70篇
  1988年   27篇
  1987年   29篇
  1986年   50篇
  1985年   87篇
  1984年   54篇
  1983年   60篇
  1982年   56篇
  1981年   68篇
  1980年   34篇
  1979年   27篇
  1978年   25篇
  1977年   24篇
  1975年   24篇
  1974年   24篇
  1973年   24篇
  1972年   21篇
  1971年   31篇
  1969年   25篇
  1968年   18篇
  1967年   21篇
  1966年   19篇
排序方式: 共有2369条查询结果,搜索用时 625 毫秒
871.
Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents.  相似文献   
872.
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultra-cold, degenerate (extremely dense) electron–positron (EP) plasma (containing non-relativistic, ultra-cold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. It is shown that due to the property of being equal mass of the plasma species (me=mpme=mp, where meme and mpmp are electron and positron mass, respectively), the degenerate EP plasma system supports the K-dV solitons which are associated with either fast or slow magnetosonic perturbation modes. It is also found that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of degenerate electron and positron pressures. The applications of the results in an EP plasma medium, which occurs in compact astrophysical objects, particularly in white dwarfs, have been briefly discussed.  相似文献   
873.
变速变姿态下飞机燃油体积解算技术   总被引:1,自引:1,他引:0  
为准确测量飞机不规则油箱内的燃油体积,在传统的查表插值法基础上,提出了基于等效传感器的自适应步长切割法(ASCM),用于建立燃油质量特性数据库,通过引入等效传感器概念,实现了不同姿态下多传感器的信息融合;该方法根据切片截面积的变化率调整切割步长,从而减小了燃油体积解算时的插值误差;利用多传感器的输出值实现了燃油平面的最小二乘(LMS)拟合,当有效传感器较少时,再结合等效燃油平面姿态角拟合燃油平面,消除了加速度对燃油平面的影响;对传统的三维查表插值法进行改进,减小了由于燃油平面姿态角插值引起的误差。基于UG二次开发,设计了燃油体积解算平台。实际油箱CAD仿真验证结果表明:该方法所建的数据库数据规模小,燃油解算速度快,实现了加速度和姿态误差修正,并减小了差值误差,进一步提高了燃油的测量精度。   相似文献   
874.
875.
Injections of energetic electrons with a dispersion over energies were observed during the February 23, 2004 (at about 03:20 UT) substorm onboard the Cluster satellites in the vicinity of perigee near the midnight meridian. The delays in the particle observation caused by the energy dependence of the magnetic drift velocities made it possible to determine the position and time of the beginning of the drift, tracing the trajectories of the leading center of particles back in time in the magnetospheric model. The comparisons of the measurements of four satellites allowed us to determine the radial propagation of the injection front with a velocity of 100–150 km/s at a distance of 7–9 R E. The comparison with a few previous measurements shows a substantial slowing down of injections as they approached the Earth, and this confirms the prospects of this method for more detailed study of propagation of plasma injection into the inner magnetosphere.  相似文献   
876.
We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations.  相似文献   
877.
Field electron emission from aligned multiwalled carbon nanotubes has been assessed to determine if the performance, defined by power consumption, lifetime and emission current, is suitable for use in spacecraft charge neutralisation for field emission electric propulsion (FEEP). Carbon nanotubes grown by chemical vapour deposition (CVD) were mounted on a dual in line chip with a macroscopic (nickel mesh) extractor electrode mounted ~1 mm above the tubes. The nanotubes’ field emission characteristics (emission currents, electron losses and operating voltage) were measured at ~10?4 Pa. An endurance test of one sample, running at a software-controlled constant emission current lasted >1400 h, approaching the longest known FEEP thruster lifetime. The emission corresponds to a current density of ~10 mA/cm2 at a voltage of 150 V. These results, implementing mature extractor-electrode geometry, indicate that carbon nanotubes have considerable potential for development as robust, low-power, long-lived electron emitters for use in space.  相似文献   
878.
The diurnal variation of the mid-latitude upper thermosphere zonal winds during equinoxes has been studied using data recently generated from CHAMP measurements from 2002 to 2004 using an iterative algorithm. The wind data was separated into two geomagnetic activity levels, representing high geomagnetic activity level (Ap > 8) and low geomagnetic activity level (Ap ? 8). The data were further separated into two solar flux levels; with F10.7 > 140 for high and F10.7 ? 140 for low. Geomagnetic activity is a correlator just as significant as solar activity. The response of mid-latitude thermospheric zonal winds to increases in geomagnetic disturbances and solar flux is evident. With increase in geomagnetic activity, midday to midnight winds are generally less eastward and generally more westward after the about midnight transitions. The results show that east west transitions generally occurred about midnight hours for all the situations analyzed. The west to east transition occurs from 1400–1500 MLT. Enhanced westward averaged zonal wind speeds going above 150 ms−1 are observed in the north hemisphere mid-latitude about sunrise hours (∼0700–1100 MLT). Nighttime winds in the north hemisphere are in good agreement with previous single station ground observations over Millstone Hill. Improved ground observations and multi satellite observations from space will greatly improve temporal coverage of the Earth’s thermosphere.  相似文献   
879.
The precise modeling and knowledge of non-gravitational forces acting on satellites is of big interest to many scientific tasks and missions. Since 2002, the twin GRACE satellites have measured these forces in a low Earth orbit with highly precise accelerometers, for about 15?years. Besides the significance for the GRACE mission, these measurement data allow the evaluation of modeling approaches and the improvement of force models. Unfortunately, before any scientific usage, the accelerometer measurements need to be calibrated, namely scale factor and bias have to be regularly estimated.In this study we demonstrate an accelerometer calibration approach, solely based on high precision non-gravitational force modeling without any use of empirically or stochastically estimated parameters, using our in-house developed satellite simulation tool XHPS. The aim of this work is twofold, first we use the accelerometer data and the residuals resulting from the calibration to quantitatively analyze and validate different non-gravitational force model approaches. In a second step, we compare the calibration results to three different calibration methods from different authors, based on gravity field recovery, GPS-based precise orbit determination, and based on modeled accelerations.We consider atmospheric drag forces and winds, as well as radiation forces due to solar radiation pressure, albedo, Earth infrared and thermal radiation (TRP) of the satellite itself. For TRP, we investigate different transient temperature calculation approaches for the satellite surfaces with absorbed power from the aforementioned radiation sources. A detailed finite element model of the satellite is utilized for every force, considering orientation, material properties and shadowing conditions for each element.For cross-track and radial direction, which are mainly affected by the radiative forces, our calibration residuals are quite small when drag is not super dominant (1–3?nm/s2 for total accelerations around ±50?nm/s2). For these directions the calibration seems to perform better than the other compared methods, where some bigger differences were found. For the drag dominated along-track direction it is vice versa, here our method is not sensitive enough because the difference between modeled and measured drag is bigger (e.g. residuals around 10?nm/s2 for total accelerations around ±70?nm/s2 for low solar activity). In along-track direction the orbit determination based methods are more sensitive and produce more reliable results. Results for the complete GRACE mission time span from 2003 to 2017 are shown, covering different seasonal environmental conditions.  相似文献   
880.
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fourier Transform spectrometer covering the spectral range 5.71–100 μm (\(1750\mbox{--}100~\mbox{cm}^{-1}\)) with a spectral sample interval of \(8.66~\mbox{cm}^{-1}\) and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 μm laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is \(\leq2.2 \times 10^{-8}~\mbox{W}\,\mbox{cm}^{-2}\,\mbox{sr} ^{-1}/\mbox{cm}^{-1}\) between 300 and \(1350~\mbox{cm}^{-1}\). The absolute integrated radiance error is \(<1\%\) for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is \(37.5 \times 28.9 \times 52.2~\mbox{cm}\), and the mass is 6.27 kg. The power consumption is 10.8 W average. OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号