全文获取类型
收费全文 | 2341篇 |
免费 | 32篇 |
国内免费 | 8篇 |
专业分类
航空 | 1272篇 |
航天技术 | 850篇 |
综合类 | 22篇 |
航天 | 237篇 |
出版年
2018年 | 30篇 |
2017年 | 26篇 |
2016年 | 19篇 |
2014年 | 29篇 |
2013年 | 57篇 |
2012年 | 32篇 |
2011年 | 64篇 |
2010年 | 50篇 |
2009年 | 62篇 |
2008年 | 129篇 |
2007年 | 38篇 |
2006年 | 32篇 |
2005年 | 47篇 |
2004年 | 69篇 |
2003年 | 78篇 |
2002年 | 46篇 |
2001年 | 56篇 |
2000年 | 49篇 |
1999年 | 27篇 |
1998年 | 76篇 |
1997年 | 53篇 |
1996年 | 62篇 |
1995年 | 69篇 |
1994年 | 85篇 |
1993年 | 51篇 |
1992年 | 69篇 |
1991年 | 29篇 |
1990年 | 33篇 |
1989年 | 70篇 |
1988年 | 27篇 |
1987年 | 29篇 |
1986年 | 51篇 |
1985年 | 87篇 |
1984年 | 54篇 |
1983年 | 60篇 |
1982年 | 57篇 |
1981年 | 68篇 |
1980年 | 34篇 |
1979年 | 27篇 |
1978年 | 25篇 |
1977年 | 24篇 |
1975年 | 24篇 |
1974年 | 24篇 |
1973年 | 24篇 |
1972年 | 21篇 |
1971年 | 31篇 |
1969年 | 25篇 |
1968年 | 18篇 |
1967年 | 21篇 |
1966年 | 19篇 |
排序方式: 共有2381条查询结果,搜索用时 0 毫秒
821.
K. Abe H. Fuke S. Haino T. Hams M. Hasegawa A. Horikoshi A. Itazaki K.C. Kim T. Kumazawa A. Kusumoto M.H. Lee Y. Makida S. Matsuda Y. Matsukawa K. Matsumoto J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki R. Orito J.F. Ormes N. Picot-Clémente K. Sakai M. Sasaki E.S. Seo Y. Shikaze R. Shinoda R.E. Streitmatter J. Suzuki Y. Takasugi K. Takeuchi K. Tanaka N. Thakur T. Yamagami A. Yamamoto T. Yoshida K. Yoshimura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data. 相似文献
822.
M.N. Kouahla G. Moreels M. Faivre J. Clairemidi J.W. Meriwether G.A. Lehmacher E. Vidal O. Veliz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09′08.2″ S, 75°33′49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33′17.6″ S, 71°39′59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5–88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10−4 and 5.4 × 10−4 J/m3, which is 2–3 times smaller than the values derived from partial radio wave at 52°N latitude. 相似文献
823.
824.
无人机系统的使用日益广泛,因此将无人机系统并入到现有的空域管理系统中显得尤为迫切。在技术层面,无人机系统有一系列独特的适航特点。因此,应重点发展针对无人机系统的适航标准与验证。研究了有人驾驶飞行器的适航标准(CS-23),及其通过剪裁后成为专门适用于无人机系统的适航标准(STANAG4671),这将促进无人机系统的技术更加标准化,并有利于国内无人机系统民用适航标准的发展。 相似文献
825.
826.
J. H. Waite Jr. W. S. Lewis W. T. Kasprzak V. G. Anicich B. P. Block T. E. Cravens G. G. Fletcher W.-H. Ip J. G. Luhmann R. L. Mcnutt H. B. Niemann J. K. Parejko J. E. Richards R. L. Thorpe E. M. Walter R. V. Yelle 《Space Science Reviews》2004,114(1-4):113-231
The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon–nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ∼12 planetary radii and about the genesis and evolution of the rings.The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≥104 cm−3 will be detected (compared with ≥105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolutionM/ΔM of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).This revised version was published online in July 2005 with a corrected cover date. 相似文献
827.
828.
L Narici V Bidoli M Casolino M P De Pascale G Furano A Morselli P Picozza E Reali R Sparvoli S Licoccia P Romagnoli E Traversa W G Sannita A Loizzo A Galper A Khodarovich M G Korotkov A Popov N Vavilov S Avdeev V P Salnitskii O I Shevchenko V P Petrov K A Trukhanov M Boezio W Bonvicini A Vacchi N Zampa R Battiston G Mazzenga M Ricci P Spillantini G Castellini P Carlson C Fuglesang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):141-146
The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS. 相似文献
829.
M. Cabane P. Coll C. Szopa G. Israël F. Raulin R. Sternberg P. Mahaffy A. Person C. Rodier R. Navarro-Gonzlez H. Niemann D. Harpold W. Brinckerhoff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2240-2245
Observation of Mars shows signs of a past Earth-like climate, and, in that case, there is no objection to the possible development of life, in the underground or at the surface, as in the terrestrial primitive biosphere. Sample analysis at Mars (SAM) is an experiment which may be proposed for atmospheric, ground and underground in situ measurements. One of its goals is to bring direct or indirect information on the possibility for life to have developed on Mars, and to detect traces of past or present biological activity. With this aim, it focuses on the detection of organic molecules: volatile organics are extracted from the sample by simple heating, whereas refractory molecules are made analyzable (i.e. volatile), using derivatization technique or fragmentation by pyrolysis. Gaseous mixtures thus obtained are analyzed by gas chromatography associated to mass spectrometry. Beyond organics, carbonates and other salts are associated to the dense and moist atmosphere necessary to the development of life, and might have formed and accumulated in some places on Mars. They represent another target for SAM. Heating of the samples allows the analysis of structural gases of these minerals (CO2 from carbonates, etc.), enabling to identify them. We also show, in this paper, that it may be possible to discriminate between abiotic minerals, and minerals (shells, etc.) created by living organisms. 相似文献
830.
为准确测量飞机不规则油箱内的燃油体积,在传统的查表插值法基础上,提出了基于等效传感器的自适应步长切割法(ASCM),用于建立燃油质量特性数据库,通过引入等效传感器概念,实现了不同姿态下多传感器的信息融合;该方法根据切片截面积的变化率调整切割步长,从而减小了燃油体积解算时的插值误差;利用多传感器的输出值实现了燃油平面的最小二乘(LMS)拟合,当有效传感器较少时,再结合等效燃油平面姿态角拟合燃油平面,消除了加速度对燃油平面的影响;对传统的三维查表插值法进行改进,减小了由于燃油平面姿态角插值引起的误差。基于UG二次开发,设计了燃油体积解算平台。实际油箱CAD仿真验证结果表明:该方法所建的数据库数据规模小,燃油解算速度快,实现了加速度和姿态误差修正,并减小了差值误差,进一步提高了燃油的测量精度。 相似文献