全文获取类型
收费全文 | 4468篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
航空 | 2086篇 |
航天技术 | 1604篇 |
综合类 | 16篇 |
航天 | 782篇 |
出版年
2021年 | 44篇 |
2019年 | 25篇 |
2018年 | 104篇 |
2017年 | 73篇 |
2016年 | 76篇 |
2015年 | 39篇 |
2014年 | 130篇 |
2013年 | 138篇 |
2012年 | 145篇 |
2011年 | 193篇 |
2010年 | 127篇 |
2009年 | 216篇 |
2008年 | 293篇 |
2007年 | 128篇 |
2006年 | 107篇 |
2005年 | 138篇 |
2004年 | 117篇 |
2003年 | 153篇 |
2002年 | 89篇 |
2001年 | 153篇 |
2000年 | 74篇 |
1999年 | 99篇 |
1998年 | 120篇 |
1997年 | 87篇 |
1996年 | 90篇 |
1995年 | 124篇 |
1994年 | 121篇 |
1993年 | 64篇 |
1992年 | 95篇 |
1991年 | 53篇 |
1990年 | 36篇 |
1989年 | 88篇 |
1988年 | 40篇 |
1987年 | 42篇 |
1986年 | 36篇 |
1985年 | 96篇 |
1984年 | 86篇 |
1983年 | 75篇 |
1982年 | 86篇 |
1981年 | 118篇 |
1980年 | 41篇 |
1979年 | 36篇 |
1978年 | 32篇 |
1977年 | 25篇 |
1976年 | 28篇 |
1975年 | 22篇 |
1974年 | 22篇 |
1973年 | 23篇 |
1972年 | 23篇 |
1971年 | 21篇 |
排序方式: 共有4488条查询结果,搜索用时 15 毫秒
821.
H. M. Cuppen C. Walsh T. Lamberts D. Semenov R. T. Garrod E. M. Penteado S. Ioppolo 《Space Science Reviews》2017,212(1-2):1-58
The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of \({\sim}25\) experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions. 相似文献
822.
The Juno Waves Investigation 总被引:1,自引:0,他引:1
W. S. Kurth G. B. Hospodarsky D. L. Kirchner B. T. Mokrzycki T. F. Averkamp W. T. Robison C. W. Piker M. Sampl P. Zarka 《Space Science Reviews》2017,213(1-4):347-392
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter’s magnetosphere and some have been directly associated with Jupiter’s auroras. The strongest radio emissions are associated with Io’s interaction with Jupiter’s magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter’s upper atmosphere generating the auroras. Since the exploration of Jupiter’s polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno’s payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission. 相似文献
823.
D. Deb A.K. Sen H.S. Das R. Gupta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A laboratory experiment helps to understand the light scattering property of regolith like samples with known compositions and other physical parameters. The laboratory data so obtained can be compared with the existing in situ data on celestial objects like asteroids. Further, it may be analyzed with the help of various theoretical models to understand the light scattering processes from regolith more clearly. In this work we have performed laboratory based photometry of the light scattered from the surfaces of powdered alumina (Al2O3) at various tilt angles of the sample and at large phase angles, with the particles having diameter 0.3 μm. The wavelength of observation was 632.8 nm. These data have been fitted by a surface scattering model originally suggested by Hapke. Instead of using empirical Henyey–Greenstein phase function to fix the values of albedo and phase function to be used within Hapke formula, we have used Mie theory for the same. This approach helped us to determine the single particle properties such as particle diameter and complex refractive index from surface scattering phase curve alone. Mie theory depends only on the size parameter X(=2π(radius/wavelength)) and complex refractive index (n, k) of the material. Since the absorption coefficient (k) for alumina is known to be very low but not exactly zero, the best fit to the experimental data was obtained by least square technique with k as a free parameter, as the other parameters are known. Finally, we compare our results with other published results and discuss the scope of application of the method we adopted. 相似文献
824.
The mass loss of spacecraft polyimide films under the action of atomic oxygen and vacuum ultraviolet radiation 总被引:1,自引:0,他引:1
The threshold values of the annual fluence of atomic oxygen (F AO ≈ 1020 cm?2), as well as the ratios of the energy-flux density of vacuum ultraviolet radiation of the solar spectrum to the flux density of atomic oxygen (Φ ν /Φ AO ≈ 8 × 10?15 mJ) were determined, which are characterized the influence of the synergistic effect on the mass loss of Kapton-H, PM-A, and PM-1E polyimide films, which are spacecraft materials. 相似文献
825.
R.D. Strauss M.S. PotgieterS.E.S. Ferreira 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The propagation of Jovian electrons in interplanetary space was modelled by solving the relevant transport equation numerically through the use of stochastic differential equations. This approach allows us to calculate, for the first time, the propagation time of Jovian electrons from the Jovian magnetosphere to Earth. Using observed quiet-time increases of electron intensities at Earth, we also derive values for this quantity. Comparing the modelled and observed propagation times we can gauge the magnitude of the transport parameters sufficiently to place a limit on the 6 MeV Jovian electron flux reaching Earth. We also investigate how the modelled propagation time, and corresponding Jovian electron flux, varies with the well-known ∼13 month periodicity in the magnetic connectivity of Earth and Jupiter. The results show that the Jovian electron intensity varies by a factor of ∼10 during this cycle of magnetic connectivity. 相似文献
826.
The techniques of forming the mobile sliding manifolds and vector controls, which bring these systems into the sliding modes under continuous action of uncertain factors, namely limited disturbances and total errors in measurements, are developed for dynamic systems with discontinuous control. The techniques are applicable for effective control of complex aerospace objects. 相似文献
827.
B.S. Shylaja 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2850-2853
The chemically peculiar (CP) stars are classified into subgroups based on the type of peculiarities. A significant fraction of these are known to be binaries. The faster evolution of the massive component leads to a white dwarf or a neutron star. Further evolution of the binary is analysed taking into consideration, the orbital parameters, effect of magnetic field, spectroscopic peculiarities and finally the statistics of CP binaries and Low Mass X-ray Binaries (LMXB).
The possible consequences of the evolution to lead to the formation of Magnetic Cataclysmic Variables (MCV) and LMXB are discussed. 相似文献
828.
K. Werner J. Barnstedt W. Gringel N. Kappelmann H. Becker-Roß S. Florek R. Graue D. Kampf A. Reutlinger C. Neumann B. Shustov A. Moisheev E. Skripunov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):1992-1997
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described. 相似文献
829.
G. Gloeckler L. A. Fisk J. Geiss M. E. Hill D. C. Hamilton R. B. Decker S. M. Krimigis 《Space Science Reviews》2009,143(1-4):163-175
Knowledge of the elemental composition of the interstellar gas is of fundamental importance for understanding galactic chemical evolution. In addition to spectroscopic determinations of certain element abundance ratios, measurements of the composition of interstellar pickup ions and Anomalous Cosmic Rays (ACRs) have provided the principal means to obtain this critical information. Recent advances in our understanding of particle acceleration processes in the heliosphere and measurements by the Voyagers of the energy spectra and composition of energetic particles in the heliosheath provide us with another means of determining the abundance of the neutral components of the local interstellar gas. Here we compare the composition at the termination shock of six elements obtained from measurements of (a) pickup ions at ~5 AU, (b) ACRs in the heliosphere at ~70 AU, and (c) energetic particles as well as (d) ACRs in the heliosheath at ~100 AU. We find consistency among these four sets of derived neutral abundances. The average interstellar neutral densities at the termination shock for H, N, O, Ne and Ar are found to be 0.055±0.021 cm?3, (1.44±0.45)×10?5 cm?3, (6.46±1.89)×10?5 cm?3, (8.5±3.3)×10?6 cm?3, and (1.08±0.49)×10?7 cm?3, respectively, assuming the He density is 0.0148±0.002 cm?3. 相似文献
830.