首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6367篇
  免费   6篇
  国内免费   14篇
航空   3048篇
航天技术   2040篇
综合类   17篇
航天   1282篇
  2021年   44篇
  2019年   32篇
  2018年   200篇
  2017年   162篇
  2016年   97篇
  2015年   44篇
  2014年   107篇
  2013年   169篇
  2012年   156篇
  2011年   304篇
  2010年   247篇
  2009年   328篇
  2008年   353篇
  2007年   247篇
  2006年   127篇
  2005年   188篇
  2004年   172篇
  2003年   185篇
  2002年   106篇
  2001年   193篇
  2000年   94篇
  1999年   127篇
  1998年   156篇
  1997年   127篇
  1996年   124篇
  1995年   173篇
  1994年   187篇
  1993年   98篇
  1992年   111篇
  1991年   46篇
  1990年   59篇
  1989年   108篇
  1988年   57篇
  1987年   41篇
  1986年   63篇
  1985年   174篇
  1984年   162篇
  1983年   124篇
  1982年   125篇
  1981年   195篇
  1980年   46篇
  1979年   39篇
  1978年   59篇
  1977年   41篇
  1976年   33篇
  1975年   55篇
  1974年   40篇
  1973年   44篇
  1972年   54篇
  1971年   30篇
排序方式: 共有6387条查询结果,搜索用时 937 毫秒
411.
We present an investigation of the influence of the 27-day solar flux variations, caused by solar rotation, on the ionosphere parameters such as the F2 layer critical frequency (foF2) and the total electron content (TEC). Our observational data were obtained with the Irkutsk Digisonde (DPS-4) located at 52.3 North and 104.3 East during the period from 2003 to 2005. In addition, we use TEC data from the Global Ionosphere Maps (GIM) based on Global Positioning System (GPS) satellites. The solar radiation flux at a wavelength of 10.7 cm (F10.7 index) is used as an index characterizing the solar activity level. A good correlation between observed ionosphere parameters and solar activity variations is found especially in autumn-to-winter season. We estimate the impact of the 27-day solar flux variations on the day-to-day variability and determine the time delay of the ionosphere response.  相似文献   
412.
Vannaroni  G.  Dobrowolny  M.  De Venuto  F. 《Space Debris》1999,1(3):159-172
Electrodynamic tethers have been recently proposed for satellite and rocket upper stage deorbiting to mitigate the debris problem at Low Earth Orbits (LEOs). The deorbiting performance of several electrodynamic tethers, where the electron collection from the ionosphere is obtained with either simple bare wires or bare wires terminated with conducting spherical collectors, was analyzed and compared. Our results indicate that the use of the spherical collectors at the positive termination of the system significantly enhances the deorbiting capabilities of the electrodynamic bare tethers.  相似文献   
413.
The orbiting solar telescope on Salyut-4 (F = 2,5 m, d = 250 mm) produces images of the Sun on the entrance slit of a stigmatic two-grating spectrograph (R1 = 1 m, N1 = 1200 lines/mm; R2 = 0.5 m, N2 = 2400 lines/mm, dispersion 16 Å/mm, spectral resolution 0,3 Å). The automatic system keeps the observed solar features on the slit of the spectrograph with an accuracy of 3–4 arc sec. The far UV-spectra (970–1400 Å) of solar flares, brightenings, flocculi and prominences were photographed and fresh coatings of mirrors were made during the flight.  相似文献   
414.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   
415.
Mende  S.B.  Heetderks  H.  Frey  H.U.  Stock  J.M.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Habraken  S.  Renotte  E.  Jamar  C.  Rochus  P.  Gerard  J.-C.  Sigler  R.  Lauche  H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%.  相似文献   
416.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   
417.
Parker  D. E.  Basnett  T. A.  Brown  S. J.  Gordon  M.  Horton  E. B.  Rayner  N. A. 《Space Science Reviews》2000,94(1-2):309-320
A survey is given of the available instrumental data for monitoring and analysis of climatic variations. We focus on temperature measurements, both over land and ocean, at the surface and aloft.Over land, the older observations were subject to exposure changes which may not have been fully compensated. The effects of urbanization have been largely avoided in studies of climatic change over the last 150 years. There are few records for pre-1850 outside Europe and eastern North America, and the global network shows a recent decline. Over the ocean, sea surface temperature (SST) has been measured using buckets, engine intakes, hull sensors, buoys, and satellites. Many of these data have been effectively homogenized, but new challenges arise as observing systems evolve. Available SST and marine air temperature datasets begin in the 1850s. The data are concentrated in shipping lanes especially before 1900, and very sparse during the world wars, but additional historical data are being digitized.The radiosonde record is short (40 years) and has major gaps over the oceans, tropics and Southern Hemisphere. Instrumental heterogeneities are beginning to be assessed and removed using physical and statistical techniques. The MSU record is complete but only began in 1979, and is not highly resolved in the vertical: major biases, mainly affecting the lower-tropospheric retrieval, have been reduced as a result of recent analyses.Advanced interpolation or data-assimilation techniques are being applied to these data, but the results must be interpreted with care.  相似文献   
418.
人-机系统飞行安全可靠性问题的研究   总被引:4,自引:2,他引:4  
在分析飞机电传操纵系统(FBW)特点的基础上,建立了习行器和电传操纵系统的数学模型,建立了电传操纵系统故障及飞行员干预的概率模型。应用马尔可夫链建立了人-机产行安全可靠性的数学模型,采用伊万诺夫法评估了某型第三代飞机在电传操纵系统故障报的排除的条件概率,并计算了电传操纵系统故障后该型飞机的飞行风险,最后提出了使用建议及技术改进建议。  相似文献   
419.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   
420.
With the possible exception of the lowest one or two scale heights, the dominant mode of circulation of Venus' atmosphere is a rapid, zonal, retrograde motion. Global albedo variations in the ultraviolet may reflect planetary scale waves propagating relative to the zonal winds. Other special phenomena such as cellular convection in the subsolar region and internal gravity waves generated in the interaction of the zonal circulation with the subsolar disturbance may also be revealed in ultraviolet imagery of the atmosphere. We discuss the contributions of experiments on the Orbiter and Entry Probes of Pioneer Venus toward unravelling the mystery of the planet's global circulation and the role played by waves, instabilities and convection therein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号