A novel fault detection (FD) method for nonlinear systems using the residuals generated by the unscented Kalman filter (UKF) is proposed. The errors of the UKF are derived and sufficient conditions for the convergence of the UKF are presented. As the local approach is a powerful statistical technique for detecting changes in the mean of a Gaussian process, it is used to devise a hypothesis test to detect faults from residuals obtained from the UKF. Further, it is demonstrated that the selection of a sample number is important in improving the performance of the local approach. To illustrate the implementation and performance of the proposed technique, it is applied to detect sensor faults in the measurement of satellite attitude. 相似文献
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good
agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of
these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between
cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional
variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources
of coronal hole (CH) and interstream (IS). 相似文献
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen
isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This
fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory
simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration
process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along
the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome
these disagreements. 相似文献
We address the first several hundred million years of Earth’s history. The Moon-forming impact left Earth enveloped in a hot
silicate atmosphere that cooled and condensed over ∼1,000 yrs. As it cooled the Earth degassed its volatiles into the atmosphere.
It took another ∼2 Myrs for the magma ocean to freeze at the surface. The cooling rate was determined by atmospheric thermal
blanketing. Tidal heating by the new Moon was a major energy source to the magma ocean. After the mantle solidified geothermal
heat became climatologically insignificant, which allowed the steam atmosphere to condense, and left behind a ∼100 bar, ∼500 K
CO2 atmosphere. Thereafter cooling was governed by how quickly CO2 was removed from the atmosphere. If subduction were efficient this could have taken as little as 10 million years. In this
case the faint young Sun suggests that a lifeless Earth should have been cold and its oceans white with ice. But if carbonate
subduction were inefficient the CO2 would have mostly stayed in the atmosphere, which would have kept the surface near ∼500 K for many tens of millions of years.
Hydrous minerals are harder to subduct than carbonates and there is a good chance that the Hadean mantle was dry. Hadean heat
flow was locally high enough to ensure that any ice cover would have been thin (<5 m) in places. Moreover hundreds or thousands
of asteroid impacts would have been big enough to melt the ice triggering brief impact summers. We suggest that plate tectonics
as it works now was inadequate to handle typical Hadean heat flows of 0.2–0.5 W/m2. In its place we hypothesize a convecting mantle capped by a ∼100 km deep basaltic mush that was relatively permeable to
heat flow. Recycling and distillation of hydrous basalts produced granitic rocks very early, which is consistent with preserved
>4 Ga detrital zircons. If carbonates in oceanic crust subducted as quickly as they formed, Earth could have been habitable
as early as 10–20 Myrs after the Moon-forming impact. 相似文献
One of the challenges of combustion chamber and nozzle design in a Liquid Propellant Engine (LPE) is to predict the behavior and performance of the cooling system. Therefore, while designing, the optimization of the cooling system is always of great importance. This paper presents the multi-objective optimization of the LPE’s cooling system. To this end, a novel framework has been developed, resulting from the application of the Response Surface Method (RSM) and the correlation coefficients matrix, sensitivity analysis and the The Particle Swarm Optimization (PSO). based on this method, the input variables, constraints, objective functions, and their surfaces were identified. In terms of multi-optimization algorithms, RSM and PSO are utilized to get global optimum. In conclusion, the methodology capability is to optimize the LPE’s cooling system, 6 percentage increase in total heat transfer and 7 bar decrease cooling system pressure loss, which resulted in a 1.2-seconds increase in the specific impulse of the engine. 相似文献
During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware.
Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s).
Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems.
For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach.
Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc. 相似文献
An expression is derived for the probability of error for a conventional binary, noncoherent, frequency-shift-key (NCFSK) communications system under the influence of bandpass Gaussian noise and a linear frequency-modulation jamming waveform. The resulting integral is expressed in terms of the well-known Q function, which depends upon average signal, noise, and jamming powers. The analytical procedures used can be applied to the analysis of the effects of other types of jamming. 相似文献