全文获取类型
收费全文 | 3843篇 |
免费 | 3篇 |
国内免费 | 10篇 |
专业分类
航空 | 1726篇 |
航天技术 | 1410篇 |
综合类 | 10篇 |
航天 | 710篇 |
出版年
2021年 | 29篇 |
2018年 | 57篇 |
2017年 | 52篇 |
2016年 | 47篇 |
2015年 | 22篇 |
2014年 | 67篇 |
2013年 | 105篇 |
2012年 | 92篇 |
2011年 | 159篇 |
2010年 | 108篇 |
2009年 | 150篇 |
2008年 | 198篇 |
2007年 | 113篇 |
2006年 | 79篇 |
2005年 | 112篇 |
2004年 | 128篇 |
2003年 | 123篇 |
2002年 | 81篇 |
2001年 | 117篇 |
2000年 | 60篇 |
1999年 | 86篇 |
1998年 | 107篇 |
1997年 | 78篇 |
1996年 | 71篇 |
1995年 | 109篇 |
1994年 | 125篇 |
1993年 | 64篇 |
1992年 | 76篇 |
1991年 | 32篇 |
1990年 | 42篇 |
1989年 | 68篇 |
1988年 | 33篇 |
1987年 | 27篇 |
1986年 | 39篇 |
1985年 | 125篇 |
1984年 | 112篇 |
1983年 | 92篇 |
1982年 | 77篇 |
1981年 | 156篇 |
1980年 | 31篇 |
1979年 | 34篇 |
1978年 | 37篇 |
1977年 | 34篇 |
1976年 | 29篇 |
1975年 | 34篇 |
1974年 | 29篇 |
1973年 | 31篇 |
1972年 | 41篇 |
1971年 | 22篇 |
1970年 | 23篇 |
排序方式: 共有3856条查询结果,搜索用时 15 毫秒
121.
B.G. Ayantunji P.N. Okeke J.O. Urama 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The seasonal variation of surface refractivity over Nigeria was studied using two years in-situ meteorological data from eight locations over Nigeria. The result shows that the surface refractivity generally has higher value during rainy season than dry season at all location studied. The results also show that the value of surface refractivity increases from arid region in the north to the coastal area in south. The results also show that local meteorology plays a very important role in refractivity variation. 相似文献
122.
Qiang Guo Volodymyr G. Galushko Andriy V. Zalizovski Sergiy B. Kashcheyev Yu Zheng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(9):2267-2274
A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network. 相似文献
123.
F. Di Capua L. Campajola P. Casolaro M. Campajola A. Aloisio A. Lucaroni G. Furano A. Menicucci S. Di Mascio F. Malatesta M. Ottavi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3249-3257
A new methodology for Total Ionizing Dose (TID) tests is proposed. It is based on the employment of an on-chip 90Sr/90Y beta source as alternative to standard methods such as 60Co gamma rays and electrons from LINAC. The use of a compact beta source for TID tests has several advantages. In particular, the irradiation of devices with more than one radiation source results in a better representation of the complex space radiation environment composed of several types, energies and dose-rates. In addition, the use of an easy handling beta source allows the irradiation of electronic devices without any damage to other auxiliary circuit. In this work, 90Sr/90Y beta source dosimetry and related radiation field characteristics are discussed in depth.In order to validate the proposed source for TID tests, a rather complex device such as the “SPC56EL70L5” microcontroller from ST-Microelectronics was exposed to 90Sr/90Y beta rays. The results of this test were compared to that of a previous test of another sample from the same lot with a standard gamma 60Co source. The electronic performances following the two irradiations have been found to be in excellent agreement, by demonstrating therefore the validity of the proposed beta source for TID tests. 相似文献
124.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R
S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R
S every 2–3 h (every ∼10 min from ∼20 R
S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献
125.
Robust model following control of parallel buck converters 总被引:1,自引:0,他引:1
Garcera G. Figueres E. Pascual M. Benavent J.M. 《IEEE transactions on aerospace and electronic systems》2004,40(3):983-997
A robust model-following (RMF) control technique for average current mode controlled (ACC) parallel buck dc-dc converters, RMFACC, is presented. RMFACC achieves that the loop gain of the voltage loop is little sensitive to the variation of power stage parameters: number of modules, input voltage, load, and component tolerances. The design of the voltage loop is 'decoupled' from the design of the disturbance rejection transfer functions in an important degree, so that the output impedance and audio susceptibility are greatly reduced without the need of high loop gain crossover frequencies. A comparative study between conventional ACC and RMFACC is shown. 相似文献
126.
The commenters point out that the idea using a two-dimensional digital correlation technique to perform synthetic-aperture-radar (SAR) processing, presented as new in the above-titled paper (see ibid., vol.24, p.218-23, May 1988), was described by them as early as 1978 and has since been described by other authors. They discuss some of these earlier studies. The author replies that he was unaware of the earlier work, and that he did not intend to convey the impression that the nonseparable transform domain processor that he presented was the first 相似文献
127.
Franceschetti G. Schirinzi G. 《IEEE transactions on aerospace and electronic systems》1990,26(2):356-366
A synthetic aperture radar (SAR) processor approach based on two-dimensional fast Fourier transform (FFT) codes coupled with an asymptotic evaluation of the unit response function is presented. For the latter, no approximation is made to the distance function, so that the full range of geometric aberrations is analytically considered, enabling an effective reference filter to be designed. The two-dimensional FFTs were designed as to run on computers of very limited memory: the required FFT is computed by means of FFTs of lower order. Two FFT codes were considered: one is faster and allows full or reduced (quick look or multilook) resolution performance to be obtained easily; the second is slower but allows the use of a space-varying filter and/or investigations on limited portions (zoom) of the image. Both codes are suited to parallel processing, e.g. by a transputer net. A full discussion on computer memory and time requirements is presented as well as first examples of image processing results 相似文献
128.
V. G. Dmitriev V. I. Biryukov O. V. Egorova S. I. Zhavoronok L. N. Rabinskii 《Russian Aeronautics (Iz VUZ)》2017,60(2):169-176
The discretization of the boundary value problem for laminated composite shells is based on the finite difference approach using the regular mesh with the constant grid step and the difference operators of the second order of accuracy. The dynamic relaxation method is proposed for the solution of the nonlinear problem. The evolutionary equations of the dynamic relaxation are constructed, and the optimum parameters of the converging linear iterative process are estimated. 相似文献
129.
This paper proposes a novel landing gear for spacecraft that allows a weight reduction due to using deformable crash legs. Numerical simulation of the landing process was performed. 相似文献
130.
Green J.L. Benson R.F. Fung S.F. Taylor W.W.L. Boardsen S.A. Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N
e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R
E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N
e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible. 相似文献