首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
航空   4篇
航天技术   7篇
航天   16篇
  2021年   2篇
  2018年   2篇
  2014年   6篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1995年   2篇
  1981年   1篇
排序方式: 共有27条查询结果,搜索用时 312 毫秒
21.
A Newton-type method is proposed to improve the accuracy of control for relative motion of two satellites in close formation. We assume that the deputy satellite is equipped with a passive attitude control system that provides one-axis stabilization, and one or two orbit control thrusters are installed along the stabilized axis. Previous studies show that it is possible to construct periodic relative trajectories both in case of passive magnetic and spin stabilization. However, the accuracy of the numerically obtained control is quite low due to modeling errors caused by linearization of the equations of relative motion. Therefore, a correction procedure is required to compensate for nonlinear effects. To this end we suggest a recently developed algorithm based on the Newton method for solving nonlinear systems with geometric constraints. Being implemented, this algorithm allows decreasing the modeling error by up to ten times. The previously found control and trajectory of the linearized system are used as initial approximations.  相似文献   
22.
The increasing number of commercial, technological and scientific missions for CubeSats poses several concerns about the topic of space junk and debris mitigation. As no regulation is currently in place, innovative solutions are needed to mitigate the impact that Low Earth Orbit objects can have during uncontrolled re-entry and the associated potential events of surface collision. We investigated the requirements, in terms of materials selection, for the development of a 3D-printed structural bus able to withstand loads during launch and in-orbit operations, with the objectives to be as light as possible and requiring the least amount of heat for demise during atmospheric re-entry. The selection indicated magnesium alloys as the best candidates to improve the reference material, aluminium 6061 T6, resulting in both mass-reduction and improved demisability. We also analysed how the relative importance of these two objectives can modify the selection of materials: if minimizing the heat to disintegration were valued more highly than lightness, for example, the new best candidates would become tin alloys. Our analysis, furthermore, suggested the importance of Liquid Crystal Polymer as the sole plastic material approaching the performance of the best metal choices. This contribution, thus, provides novel insight in the field of 3D-printed materials for the fast-growing CubeSat segment, complying with the debris mitigation initiatives promoted by space agencies and institutions.  相似文献   
23.
Life and living systems need several important factors to establish themselves and to have a continued tradition. In this article the nature of the borderline situation for microbial life under heavy salt stress is analyzed and discussed using the example of biofilms and microbial mats of sabkha systems of the Red Sea. Important factors ruling such environments are described, and include the following: (1) Microbial life is better suited for survival in extremely changing and only sporadically water-supplied environments than are larger organisms (including humans). (2) Microbial life shows extremely poikilophilic adaptation patterns to conditions that deviate significantly from conditions normal for life processes on Earth today. (3) Microbial life adapts itself to such extremely changing and only ephemerally supportive conditions by the capacity of extreme changes (a) in morphology (pleomorphy), (b) in metabolic patterns (poikilotrophy), (c) in survival strategies (poikilophily), and (d) by trapping and enclosing all necessary sources of energy matter in an inwardly oriented diffusive cycle. All this is achieved without any serious attempt at escaping from the extreme and extremely changing conditions. Furthermore, these salt swamp systems are geophysiological generators of energy and material reservoirs recycled over a geological time scale. Neither energy nor material is wasted for propagation by spore formation. This capacity is summarized as poikilophilic and poikilotroph behavior of biofilm or microbial mat communities in salt and irradiationstressed environmental conditions of the sabkha or salt desert type. We use mainly cyanobacteria as an example, although other bacteria and even eukaryotic fungi may exhibit the same potential of living and surviving under conditions usually not suitable for life on Earth. It may, however, be postulated that such poikilophilic organisms are the true candidates for life support and survival under conditions never recorded on Planet Earth. Mars and some planets of other suns may be good candidates to search for life under conditions normally not thought to be favorable for the maintenance of life.  相似文献   
24.
This paper aims to identify and address key determinants of ESDP in space—political, industrial, research, technology and development (RTD) and procurement issues. It refers to different forms of cooperation serving the security and defence objectives of the EuropeanCommunity but organized beyond it (ESA, OCCAR, LoI, BOC, bi -or multilateral cooperation), attempting to define architecture and mechanisms for effective collaboration that could be applied between all members of the “EU 25”.  相似文献   
25.
The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people?s bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system?s operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is programmed to exhibit behavior in direct relation to human activity. It is based upon two active systems, the Activity Evaluation System (AES) and the Response System (RS), with combined action that is always open to the control of the user. The AES monitors the daily schedule of the astronauts in order to find patterns of activity, understand the context of actions and moreover to assess the psychological condition of the crew-members. If it finds cause for intervention, AES will give way to the RS which employs smart materials, controllers and actuators in order to perform required changes in the environmental factors, both spatial (volume and surface) and ambient (audio, visual, olfactory, and haptic), and induce a desirable spatial and/or psychological condition that is beneficial for the astronauts? comfort and well being.  相似文献   
26.
We study the Forbush decrease of the galactic cosmic ray intensity observed in 9–25 September 2005 using the experimental data and a newly developed time-dependent three dimensional modeling. We analyze neutron monitors and muon telescopes, and the interplanetary magnetic field data. We demonstrate a clear relationship between the rigidity (R) spectrum exponent (γ) of the Forbush decrease and the exponent (ν) of the power spectral density of the components of the interplanetary magnetic field in the frequency range of ∼ 10−6–10 −5 Hz. We confirm that an inclusion of the time-dependent changes of the exponent ν makes the newly developed nonstationary three dimensional model of the Forbush decrease compatible with the experimental data. Also, we show that the changes of the rigidity spectrum exponent γ does not depend on the level of convection of the galactic cosmic rays stream by solar wind; depending on the changes of the exponent ν, i.e. on the state of the turbulence of the interplanetary magnetic field.  相似文献   
27.
Life and its former traces can only be detected from space when they are abundant and exposed to the planetary atmosphere at the moment of investigation by orbiters. Exposed rock surfaces present a multifractal labyrinth of niches for microbial life. Based upon our studies of highly stress-resistant microcolonial fungi of stone monument and desert rock surfaces, we propose that microbial biofilms that develop and become preserved on rock surfaces can be identified remotely by the following characteristics: (1) the existence of spectroscopically identifiable compounds that display unique adsorption, diffraction, and reflection patterns characteristic of biogenerated organic compounds (e.g., chlorophylls, carotenes, melanins, and possibly mycosporines), (2) demonstrably biogenic geomorphological features (e.g., biopitting, biochipping, and bioexfoliation), and (3) biominerals produced in association with biofilms that occupy rock surfaces (e.g., oxalates, forsterite, and special types of carbonates, sulfides, and silicates). Such traces or biosignatures of former life could provide macroscopically visible morphotypes and chemically identifiable products uniquely indicative of life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号