首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2729篇
  免费   8篇
  国内免费   15篇
航空   1349篇
航天技术   1069篇
综合类   10篇
航天   324篇
  2019年   18篇
  2018年   25篇
  2017年   19篇
  2016年   19篇
  2014年   51篇
  2013年   60篇
  2012年   52篇
  2011年   90篇
  2010年   61篇
  2009年   107篇
  2008年   159篇
  2007年   64篇
  2006年   68篇
  2005年   71篇
  2004年   80篇
  2003年   82篇
  2002年   52篇
  2001年   77篇
  2000年   50篇
  1999年   68篇
  1998年   80篇
  1997年   49篇
  1996年   61篇
  1995年   80篇
  1994年   76篇
  1993年   51篇
  1992年   63篇
  1991年   31篇
  1990年   32篇
  1989年   70篇
  1988年   27篇
  1987年   29篇
  1986年   31篇
  1985年   122篇
  1984年   68篇
  1983年   57篇
  1982年   61篇
  1981年   105篇
  1980年   35篇
  1979年   26篇
  1978年   26篇
  1977年   29篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1970年   24篇
  1969年   27篇
  1968年   16篇
排序方式: 共有2752条查询结果,搜索用时 0 毫秒
871.
    
Contained herin is a derivation of two figures of merit for evaluating the performance of a product correlator and an associated discriminator curve. The general formulas are valid for both area and one-dimensional scenes. An explicit evaluation of the formulas is presented when the correlation functions are also Gaussian. In this case, the accuracy and probability of false match are found to take very simple forms.  相似文献   
872.
This article examines the USSR's satellite communications provision in the international arena. The author first outlines the Intercosmos programme, collaboration between the USSR and France and India, and maritime satellite communications. He then discusses in detail the INTERSPUTNIK system, and Soviet international coverage and competitiveness in television. In conclusion, the complex interaction and overlap between cooperation and competition in space is explained.  相似文献   
873.
The VEGA-1 and VEGA-2 spacecraft made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper those results of the onboard imaging experiment which were obtained around closest approach are discussed. The nucleus of the comet was clearly identifiable as an irregularly shaped object, with overall dimensions of (16±1)×(8±1)×(8±1) km. The nucleus rotates in the prograde sense about an axis nearly perpendicular to the orbital plane with a period of 53±2 hours. Its albedo is only 0.04±0.020.01 Many of the jet features observed during the second fly-by have been spatially reconstructed. Their sources form a quasi-linear structure on the surface. The dust above the surface is shown to be generally optically thin with the exception of certain specific dust jets. Brightness features on the surface are clearly seen. Correlating our data with other measurements, we conclude that the dirty snow-ball model will probably need to be revised.  相似文献   
874.
A spatio-temporal method for identifying objects contained in an image sequence is presented. The Hidden Markov Model (HMM) technique is used as the classification algorithm, making classification decisions based on a spatio-temporal sequence of observed object features. A five class problem is considered. Classification accuracies of 100% and 99.7%, are obtained for sequences of images generated over two separate regions of viewing positions. HMMs trained on image sequences of the objects moving in opposite directions showed a 98.1% successful classification rate by class and direction of movement. The HMM technique proved robust to image corruption with additive correlated noise and had a higher accuracy than a single-look nearest neighbor method. A real image sequence of one of the objects used was successfully recognized with the HMMs trained on synthetic data. This study shows the temporal changes that observed feature vectors undergo due to object motion hold information that can yield superior classification accuracy when compared with single-frame techniques  相似文献   
875.
  总被引:1,自引:0,他引:1  
The Cassini RADAR instrument is a multimode 13.8 GHz multiple-beam sensor that can operate as a synthetic-aperture radar (SAR) imager, altimeter, scatterometer, and radiometer. The principal objective of the RADAR is to map the surface of Titan. This will be done in the imaging, scatterometer, and radiometer modes. The RADAR altimeter data will provide information on relative elevations in selected areas. Surfaces of the Saturn’s icy satellites will be explored utilizing the RADAR radiometer and scatterometer modes. Saturn’s atmosphere and rings will be probed in the radiometer mode only. The instrument is a joint development by JPL/NASA and ASI. The RADAR design features significant autonomy and data compression capabilities. It is expected that the instrument will detect surfaces with backscatter coefficient as low as −40 dB.RADAR Team LeaderThis revised version was published online in July 2005 with a corrected cover date.  相似文献   
876.
  总被引:2,自引:0,他引:2  
The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University’s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored on board so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.  相似文献   
877.
Gravity missions such as the Gravity field and steady-state Ocean Circulation Explorer (GOCE) are equipped with onboard Global Positioning System (GPS) receivers for precise orbit determination (POD), instrument time-tagging, and the extraction of the long wavelength part of the Earth’s gravity field. The very low orbital altitude of the GOCE satellite and the availability of dense 1 s GPS tracking data are ideal characteristics to exploit the contribution of GPS high-low Satellite-to-Satellite Tracking (hl-SST) to gravity field determination. We present gravity field solutions based on about 8 months of GOCE GPS hl-SST data from 2009 and compare the results with those obtained from the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) missions. The very low orbital altitude of GOCE significantly improves gravity field recovery from GPS hl-SST data above degree 20, but not for the degrees below 20, where the quality of the spherical harmonic coefficients remains essentially unchanged. Despite the limited time span of GOCE data used, the gravity field of the Earth can be resolved up to about degree 115 using GPS data only. Empirically determined phase center variations (PCVs) of the GOCE onboard GPS helix antenna are, however, mandatory to achieve this performance.  相似文献   
878.
    
Our knowledge of the interplanetary medium is outlined and its frictionless interaction with the geomagnetic cavity, first discussed by Chapman and Ferraro, is described. An important feature of this interaction is the interplanetary field which is compressed and may possibly lead to the formation of a shock wave.The possibility of frictional interaction between the solar wind and the cavity is discussed; an effect which appears to cause friction is the instability of interpenetrating ion-electron streams. This effect will also cause strong heating and trapping of ions and the generation of electromagnetic waves.The theory of propagation of geomagnetic disturbances in the magnetosphere and ionosphere is reviewed, first in general terms and than for some of the various components of a geomagnetic storm.Sea-level disturbances are divided into stormtime (Dst) and other (DS) components and also into different phases and the experimental data is reviewed. Theories of Dst, including the ringcurrent theory and magnetic tail theory are discussed and compared. Attempts to explain the complex DS field comprise the magnetospheric dynamo theory and the asymmetrical ring-current theory; these are compared in the light of experimental evidence.Motions of plasma and field lines in the magnetosphere are discussed in general terms: there are motions which deform the field and there are interchange motions. The former are opposed by Earth currents; the latter are not. The two types of motion are coupled through ionospheric Hall conductivity. Theories of the DS field in terms of the two types of motion are described; in particular motions caused by frictional interaction with the solar wind are discussed. These motions cause a helical twist in the field lines which propagates into the polar ionosphere as a hydromagnetic wave. In the ionosphere the motions of the field lines drive currents (moving-field dynamo) which cause the DS field.Drifts of neutral ionization in the lower ionosphere lead to localized accumulations which play a vital part in storm and auroral theory: they cause polarization fields which change the DS current system; they react on the magnetospheric motions to cause particle acceleration and precipitation.Auroral morphology and theories are briefly reviewed; the solar wind friction theory, although far from complete may provide a start. Further development should take the form of determining ionospheric drifts, polarization electric fields and consequent magnetospheric effects.A brief discussion is given of some associated effects: growth and decay of belts of geomagnetically trapped corpuscules; increase in ionospheric absorption of radio waves and lower-level X-ray production, ionospheric storm and high-latitude irregularities, micropulsations, VLF and ELF radio emissions from the magnetosphere, atmospheric heating and wave generation.  相似文献   
879.
    
This paper reports the ionospheric anomalies observed during strong local earthquakes (M?5.0) which occurred mostly in and around Uzbekistan in seismically active zones, during years 2006 to 2009 within approximately 1000 km distance from the observing GPS stations located in Tashkent and Kitab, Uzbekistan. The solar and geomagnetic conditions were quiet during occurrence of the selected strong earthquakes. We produce Total Electron Content (TEC) time series over both sites and apply them to detect anomalous TEC signals preceding or accompanying the local earthquakes. The results show anomalous increase or decrease of TEC before or during the earthquakes. In general the anomalies occurred 1–7 days before the earthquakes as ionospheric electromagnetic precursors. To identify the anomalous values of TEC we calculated differential TEC (dTEC). dTEC is obtained by subtracting monthly averaged diurnal vTEC from the values of observed vTEC at each epoch. This procedure removes normal diurnal variations of vTEC. The present results are in good agreement with the previous observations on ionospheric earthquake precursors reported by various researchers.  相似文献   
880.
This paper adopts a scale analysis technique to investigate the properties of intermediate-scale plasma structures observed by ROCSAT-1 in the equatorial F-region. A procedure of scale analysis that is developed via the empirical mode decomposition (EMD) method of Hilbert–Huang transform (HHT) technique allows the mutually correlated components in velocity, density and relative density gradient to be identified and extracted. Comparing the three parameters, good match in wave form is found for density and velocity in the scales between kilometers and hundred meters (few kilometers to 300 m). It implies that there are electric fields proportional to density fluctuation −δn/n in the form similar to what is expected for the generalized Rayleigh–Taylor instability. We find that such a one-to-one match holds for various pre- and post-midnight ESF bubbles during quiet and storm times. It, therefore, means that spatial structures of electric field in the intermediate-scale (300 m to few kilometers) correlates to the density structures in a manner of δE ∝  −δn/n that is not necessarily depending on the driving mechanism of ESF bubbles, although it is known that ESF bubbles can be driven by different mechanisms under different space weather conditions. In smaller scales (300–50 m), fluctuation patterns of density and velocity do not correlate to each other any more, the good match is then found in the density gradient ∇xn/n and velocity. It is known as the manifestation of the Boltzmann relation. We note that the GRT instability related relationship δVz ∝  −δn/n for irregularities in scale of kilometers holds only for ESF bubbles that occur within ±5 dip latitude, while the Boltzmann relation (δVz proportional to ∇xn/n) holds for small-scale irregularities without such a limitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号