首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
  国内免费   4篇
航空   37篇
航天技术   41篇
航天   31篇
  2021年   11篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   11篇
  2010年   3篇
  2009年   8篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   8篇
  2003年   4篇
  2002年   1篇
  1999年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
91.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   
92.
93.
94.
The dynamic derivatives are widely used in linear aerodynamic models in order to determine the flying qualities of an aircraft: the ability to predict them reliably, quickly and sufficiently early in the design process is vital in order to avoid late and costly component redesigns. This paper describes experimental and computational research dealing with the determination of dynamic derivatives carried out within the FP6 European project SimSAC. Numerical and experimental results are compared for two aircraft configurations: a generic civil transport aircraft, wing-fuselage-tail configuration called the DLR-F12 and a generic Transonic CRuiser, which is a canard configuration. Static and dynamic wind tunnel tests have been carried out for both configurations and are briefly described within this paper. The data generated for both the DLR-F12 and TCR configurations include force and pressure coefficients obtained during small amplitude pitch, roll and yaw oscillations while the data for the TCR configuration also include large amplitude oscillations, in order to investigate the dynamic effects on nonlinear aerodynamic characteristics. In addition, dynamic derivatives have been determined for both configurations with a large panel of tools, from linear aerodynamic (Vortex Lattice Methods) to CFD. This work confirms that an increase in fidelity level enables the dynamic derivatives to be calculated more accurately. Linear aerodynamics tools are shown to give satisfactory results but are very sensitive to the geometry/mesh input data. Although all the quasi-steady CFD approaches give comparable results (robustness) for steady dynamic derivatives, they do not allow the prediction of unsteady components for the dynamic derivatives (angular derivatives with respect to time): this can be done with either a fully unsteady approach i.e. with a time-marching scheme or with frequency domain solvers, both of which provide comparable results for the DLR-F12 test case. As far as the canard configuration is concerned, strong limitations for the linear aerodynamic tools are observed. A key aspect of this work are the acceleration techniques developed for CFD methods, which allow the computational time to be dramatically reduced while providing comparable results.  相似文献   
95.
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites).  相似文献   
96.
The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5?g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.  相似文献   
97.
The Lithopanspermia space experiment was launched in 2007 with the European Biopan facility for a 10-day spaceflight on board a Russian Foton retrievable satellite. Lithopanspermia included for the first time the vagrant lichen species Aspicilia fruticulosa from Guadalajara steppic highlands (Central Spain), as well as other lichen species. During spaceflight, the samples were exposed to selected space conditions, that is, the space vacuum, cosmic radiation, and different spectral ranges of solar radiation (λ?≥?110, ≥200, ≥290, or ≥400?nm, respectively). After retrieval, the algal and fungal metabolic integrity of the samples were evaluated in terms of chlorophyll a fluorescence, ultrastructure, and CO(2) exchange rates. Whereas the space vacuum and cosmic radiation did not impair the metabolic activity of the lichens, solar electromagnetic radiation, especially in the wavelength range between 100 and 200?nm, caused reduced chlorophyll a yield fluorescence; however, there was a complete recovery after 72?h of reactivation. All samples showed positive rates of net photosynthesis and dark respiration in the gas exchange experiment. Although the ultrastructure of all flight samples showed some probable stress-induced changes (such as the presence of electron-dense bodies in cytoplasmic vacuoles and between the chloroplast thylakoids in photobiont cells as well as in cytoplasmic vacuoles of the mycobiont cells), we concluded that A. fruticulosa was capable of repairing all space-induced damage. Due to size limitations within the Lithopanspermia hardware, the possibility for replication on the sun-exposed samples was limited, and these first results on the resistance of the lichen symbiosis A. fruticulosa to space conditions and, in particular, on the spectral effectiveness of solar extraterrestrial radiation must be considered preliminary. Further testing in space and under space-simulated conditions will be required. Results of this study indicate that the quest to discern the limits of lichen symbiosis resistance to extreme environmental conditions remains open.  相似文献   
98.
This paper surveys some of the astrophysical environments in which the effects of Lense-Thirring precession and, more generally, frame dragging are expected to be important. We concentrate on phenomena that can probe in situ the very strong gravitational field and single out Lense-Thirring precession in the close vicinity of accreting neutron stars and black holes: these are the fast quasi periodic oscillations in the X-ray flux of accreting compact objects. We emphasise that the expected magnitude of Lense-Thirring/frame dragging effects in the regions where these signals originate are large and thus their detection does not pose a challenge; rather it is the interpretation of these phenomena that needs to be corroborated through deeper studies. Relativistic precession in the spin axis of radio pulsars hosted in binary systems hosting another neutron star has also been measured. The remarkable properties of the double pulsar PSR J0737–3039 has opened a new perspective for testing the predictions of general relativity also in relation to the precession of spinning bodies.  相似文献   
99.
100.
Liquid water is a basic ingredient for life as we know it. Therefore, in order to understand the habitability of other planets we must first understand the behavior of water on them. Mars is the most Earth-like planet in the solar system and it has large reservoirs of H2O. Here, we review the current evidence for pure liquid water and brines on Mars, and discuss their implications for future and current missions such as the Mars Science Laboratory. Neither liquid water nor liquid brines are currently stable on the surface of Mars, but they could be present temporarily in a few areas of the planet. Pure liquid water is unlikely to be present, even temporarily, on the surface of Mars because evaporation into the extremely dry atmosphere would inhibit the formation of the liquid phase, where the temperature and pressure are high enough so that water would neither freeze nor boil. The exception to this is that monolayers of liquid water, referred to as undercooled liquid interfacial water, could exist on most of the Martian surface. In a few places liquid brines could exist temporarily on the surface because they could form at cryogenic temperatures, near ice or frost deposits where sublimation could be inhibited by the presence of nearly saturated air. Both liquid water and liquid brines might exist in the shallow subsurface because even a thin layer of soil forms an effective barrier against sublimation allowing pure liquid water to form sporadically in a few places, or liquid brines to form over longer periods of time in large portions of the planet. At greater depths, ice deposits could melt where the soil conductivity is low enough to blanket the deeper subsurface effectively. This could cause the formation of aquifers if the deeper soil is sufficiently permeable and an impermeable layer exists below the source of water. The fact that liquid brines and groundwater are likely to exist on Mars has important implications for geochemistry, glaciology, mineralogy, weathering and the habitability of Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号