首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
航空   52篇
航天技术   20篇
航天   11篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2010年   2篇
  2008年   6篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   5篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1968年   2篇
  1967年   3篇
排序方式: 共有83条查询结果,搜索用时 218 毫秒
61.
A review of the physics and gasdynamics associated with conventional CO2-N2 gasdynamic lasers (GDL's) is given, including a short survey of the state of the art. The role of advanced, downstream mixing GDL's is examined, and the question is addressed: Can such downstream mixing GDL's provide an order-of-magnitude increase in power output over the conventional device? Finally, combustion driven GDL's with unconventional fuels are examined, and new results for gain and maximum available power are given for various fuel-oxidizer combinations.  相似文献   
62.
The ISEE-1 electron guns were operated during the final orbits of ISEE-1 in 1987 in tests designed to study the stimulation of plasma waves. The guns were operated in modes which varied from 10-μA, at 10-eV, to 100-μA at 45-eV. Experiments were run on inbound orbits, while moving from the solar wind into perigee on the dusk side. A broadband emission was generally found from 0.1–10-kHz (e.g. below the plasma frequency). Next, a strong signal was typically induced at about 80-kHz, well above the ambient plasma frequency. This is interpreted as being the plasma frequency associated with the “beam” electrons. There were occasionally intensifications of the naturally occurring signals at the electron cyclotron frequency and the electron plasma frequency (or upper hybrid resonance).  相似文献   
63.
This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.  相似文献   
64.
65.
The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.  相似文献   
66.
67.
The time required to execute a successful escape maneuver must be deduced from considerations of the following times: time required to gain adequate altitude separation, delay time due to pilot reaction, aircraft servo-system delay, delay due to missed data, delay due to data arrival time, alarm delay due to ? errors, time to stop turning, and time to level off. Since each of these times is a random variable, the required escape time must be determined in a probabilistic sense. By assigning appropriate probability density functions to each of the times involved, formulas are derived for the escape times required by the CAS hazard logic. The results of a simulation of 10 000 aircraft encounters verify the suitability of the formulas.  相似文献   
68.
This paper discusses some of the present developments in in situ electronics maintenance by the use of divers and by remote manipulators, and relates the effect of these developments to the operating cost of future sea-floor instrumentation systems.  相似文献   
69.
The Global-Scale Observations of the Limb and Disk (GOLD) Mission   总被引:2,自引:0,他引:2  
The Earth’s thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth’s atmosphere. Previous missions have successfully determined how the “climate” of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the “weather” of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth’s atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth’s emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.  相似文献   
70.
Both the Ulysses and Galileo spacecraft detected energetic electrons and Langmuir waves that were associated with a type III radio burst on 10 December 1990. At the time of these observations, these spacecraft were in the ecliptic plane and separated by 0.4 AU, with Galileo near the Earth at 1 AU and Ulysses at 1.36 AU. From the measured electron arrival times, the propagation path lengths of the electrons to both Ulysses and Galileo were estimated to be significantly longer than the length of the Parker spiral. These long path lengths are interpreted as due to draping of the interplanetary magnetic field lines around a CME. The onset times of the Langmuir waves at Ulysses and Galileo coincided with the estimated arrival time of the 9 keV and 14 keV electrons, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号